1887

Abstract

A few members of the family are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus , with LMG 1527 as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as -alanine, -cysteine and -threonine served as carbon and nitrogen sources for growth of strain RG3. Strain RG3 produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2–27.77 % DNA–DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name sp. nov. is proposed, with the type strain RG3 (=LMG 23726=MTCC 6913).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64638-0
2007-02-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/353.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64638-0&mimeType=html&fmt=ahah

References

  1. Blanc, P. J. ( 1996; ). Characterization of the tea fungus metabolites. Biotechnol Lett 18, 139–142.[CrossRef]
    [Google Scholar]
  2. Boesch, C., Trček, J., Sievers, M. & Teuber, M. ( 1998; ). Acetobacter intermedius sp. nov. Syst Appl Microbiol 21, 220–229.[CrossRef]
    [Google Scholar]
  3. Cavalcante, V. & Döbereiner, J. ( 1988; ). A new acid tolerant nitrogen-fixing bacterium associated with the sugarcane. Plant Soil 108, 23–31.[CrossRef]
    [Google Scholar]
  4. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1558.[CrossRef]
    [Google Scholar]
  5. Dellaglio, F., Cleenwerck, I., Felis, G. E., Engelbeen, K., Janssens, D. & Marzotto, M. ( 2005; ). Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55, 2365–2370.[CrossRef]
    [Google Scholar]
  6. Dutta, D. & Gachhui, R. ( 2006; ). Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56, 1899–1903.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Forng, E. R., Anderson, S. M. & Cannon, R. E. ( 1989; ). Synthetic medium for Acetobacter xylinum that can be used for isolation of auxotrophic mutants and study of cellulose biosynthesis. Appl Environ Microbiol 55, 1317–1319.
    [Google Scholar]
  9. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  10. Franke, I. H., Fegan, M., Hayward, A. C. & Sly, L. I. ( 1998; ). Nucleotide sequence of the nifH gene coding for nitrogen reductase in the acetic acid bacterium Acetobacter diazotrophicus. Lett Appl Microbiol 26, 12–16.[CrossRef]
    [Google Scholar]
  11. Franke, I. H., Fegan, M., Hayward, A. C., Leonard, G., Stackebrandt, E. & Sly, L. I. ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49, 1681–1693.[CrossRef]
    [Google Scholar]
  12. Fuentes-Ramírez, L. E., Bustillos-Cristales, R., Tapia-Herńandez, A., Jiménez-Salgado, T., Wang, E. T., Martínez-Romero, E. & Caballero-Mellado, J. ( 2001; ). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51, 1305–1314.
    [Google Scholar]
  13. Gillis, M., Kersters, K., Hoste, B., Janssens, D., Kroppenstedt, R. M., Stephan, M. P., Teixeria, K. R. S., Döbereiner, J. & De Ley, J. ( 1989; ). Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic bacterium associated with sugarcane. Int J Syst Bacteriol 39, 361–364.[CrossRef]
    [Google Scholar]
  14. Gosselé, F., Swings, J., Kesters, K., Pauwels, P. & De Ley, J. ( 1983; ). Numerical analysis of phenotypic features and protein gel electropherograms of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898. Syst Appl Microbiol 4, 338–368.[CrossRef]
    [Google Scholar]
  15. Greenberg, D. E., Porcella, S. F., Stock, F., Wong, A., Conville, P. S., Murray, P. R., Holland, S. M. & Zelazny, A. M. ( 2006; ). Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56, 2609–2616.[CrossRef]
    [Google Scholar]
  16. Hestrin, S. & Schramm, M. ( 1954; ). Synthesis of cellulose by Acetobacter xylinum. Biochem J 58, 345–352.
    [Google Scholar]
  17. Jimenez-Salgado, T., Fuentes-Ramírez, L. E., Tapia-Herńandez, A., Mascarúa-Esparza, M. A., Martínez-Romero, E. & Caballero-Mellado, J. ( 1997; ). Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63, 3676–3683.
    [Google Scholar]
  18. Jojima, Y., Mihara, Y., Suzuki, S., Yokozeki, K., Yamanaka, S. & Fudou, R. ( 2004; ). Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54, 2263–2267.[CrossRef]
    [Google Scholar]
  19. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  20. Labrenz, M., Tindall, B. J., Lawson, P. A., Collins, M. D., Schumann, P. & Hirsch, P. ( 2000; ). Staleya guttiformis gen. nov., sp. nov., and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbiol 50, 303–313.[CrossRef]
    [Google Scholar]
  21. Lee, S., Sevilla, M., Meletzus, D., Gunapala, N. & Kennedy, C. ( 2000; ). Characterization of nitrogen fixation genes and plant-growth promoting properties in Acetobacter diazotrophicus, an endophyte of sugarcane. In Plant–Microbe Interactions, vol. 5, pp. 196–204. Edited by G. Stacey & N. T. Keen. St Paul, MN: American Phytopathological Society.
  22. Lisdiyanti, P., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2002; ). Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 52, 813–818.[CrossRef]
    [Google Scholar]
  23. Lisdiyanti, P., Navarro, R. R., Uchimura, T. & Komagata, K. ( 2006; ). Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 56, 2101–2111.[CrossRef]
    [Google Scholar]
  24. Loganathan, P. & Nair, S. ( 2004; ). Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54, 1185–1190.[CrossRef]
    [Google Scholar]
  25. Lu, S.-F., Lee, F.-L. & Chen, H.-K. ( 1999; ). A thermotolerant and high acetic-acid producing bacterium Acetobacter sp. 114-2. J Appl Microbiol 86, 55–62.[CrossRef]
    [Google Scholar]
  26. Muthukumarasamy, R., Revathi, G., Seshadri, S. & Lakshminarsimhan, C. ( 2002; ). Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83, 137–145.
    [Google Scholar]
  27. Muthukumarasamy, R., Cleenwerck, I., Revathi, G., Vadivelu, M., Janssens, D., Hoste, B., Gum, K. U., Park, K. D., Son, C. Y. & other authors ( 2005; ). Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28, 277–286.[CrossRef]
    [Google Scholar]
  28. Navarro, R. R. & Komagata, K. ( 1999; ). Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J Gen Appl Microbiol 45, 7–15.[CrossRef]
    [Google Scholar]
  29. Navarro, R. R., Uchimura, T. & Komagata, K. ( 1999; ). Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. J Gen Appl Microbiol 45, 295–300.[CrossRef]
    [Google Scholar]
  30. Schüller, G., Hertel, C. & Hammes, W. P. ( 2000; ). Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50, 2013–2020.[CrossRef]
    [Google Scholar]
  31. Sokollek, S. J., Hertel, C. & Hammes, W. P. ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48, 935–940.[CrossRef]
    [Google Scholar]
  32. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  33. Stal, L. J. ( 1988; ). Nitrogen fixation in cyanobacterial mats. Methods Enzymol 167, 475–484.
    [Google Scholar]
  34. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  35. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  36. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1997; ). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconacetobacter to the generic level. Biosci Biotechnol Biochem 61, 1244–1251.[CrossRef]
    [Google Scholar]
  37. Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T. & Komagata, K. ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50, 823–829.[CrossRef]
    [Google Scholar]
  38. Yukphan, P., Malimas, T., Potacharoen, W., Tanasupawat, S., Tanticharoen, M. & Yamada, Y. ( 2005; ). Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the alpha-Proteobacteria. J Gen Appl Microbiol 51, 301–311.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64638-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64638-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error