1887

Abstract

A Gram-negative, non-motile, rod- or oval-shaped -like bacterial strain, SW-265, was isolated from seawater at Hwajinpo, Korea, and was subjected to a polyphasic taxonomic study. Strain SW-265 grew optimally at pH 7.0–8.0 and 30 °C in the presence of 2 % (w/v) NaCl. It contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The DNA G+C content was 57.8 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain SW-265 fell within the cluster comprising species. The levels of 16S rRNA gene sequence similarity between strain SW-265 and the type strains of species ranged from 97.1 to 98.7 %. DNA–DNA relatedness data and differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain SW-265 differs from recognized species. On the basis of the phenotypic, phylogenetic and genetic data, strain SW-265 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SW-265 (=KCTC 12738=JCM 13602).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64637-0
2007-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/302.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64637-0&mimeType=html&fmt=ahah

References

  1. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51:1997–2006 [CrossRef]
    [Google Scholar]
  2. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Ivanova E. P., Gorshkova N. M., Sawabe T., Zhukova N. V., Hayashi K., Kurilenko V. V., Alexeeva Y., Buljan V., Nicolau D. V. other authors 2004; Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish ( Stellaster equestris ) and sea grass ( Zostera marina ). . Int J Syst Evol Microbiol 54:475–480 [CrossRef]
    [Google Scholar]
  5. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  6. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  7. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  8. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  9. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P., Bernard L., Stackebrandt E. 1999; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α - Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  10. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  11. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology (English translation of Mikrobiologiia ) 64354–365
    [Google Scholar]
  12. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  13. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  14. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J. 2004; Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184 [CrossRef]
    [Google Scholar]
  15. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  16. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  17. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rRNA gene sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  18. Yoon J.-H., Kang K. H., Park Y.-H. 2003; Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 53:449–454 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64637-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64637-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error