1887

Abstract

A Gram-negative bacterium, designated strain EMB71, was isolated from activated sludge used for enhanced biological phosphorus removal in a sequencing batch reactor. The cells of the isolate were facultatively aerobic, motile rods with single polar flagella. Growth was observed to occur at 15–35 °C (optimally at 30 °C) and at pH 6.0–9.0 (optimally at pH 7.0–8.0). The predominant fatty acids of strain EMB71 were C and summed feature 3 (C 7 and/or iso-C 2-OH), and the polar lipids comprised a large amount of phosphatidylethanolamine and a small amount of diphosphatidylglycerol. The G+C content of the genomic DNA was 61.6 mol % and the major quinone was Q-8. Comparative 16S rRNA gene sequence analyses showed that strain EMB71 formed a phyletic lineage with the genus within the family . The levels of 16S rRNA gene sequence similarity with respect to the type strains of species ranged from 95.1 to 96.9 %. On the basis of the phenotypic, chemotaxonomic and molecular data, strain EMB71 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EMB71 (=KCTC 12613=DSM 17962).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64629-0
2007-05-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1126.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64629-0&mimeType=html&fmt=ahah

References

  1. Blümel, S., Busse, H.-J., Stolz, A. & Kämpfer, P. ( 2001; ). Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51, 1831–1837.[CrossRef]
    [Google Scholar]
  2. Contzen, M., Moore, E. R., Blümel, S., Stolz, A. & Kämpfer, P. ( 2000; ). Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 23, 487–493.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 2002; ). phylip (phylogeny inference package), version 3.6a. Department of Genome Sciences, University of Washington, Seattle, USA.
  4. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt. Washington, DC: American Society for Microbiology.
  5. Gomori, G. ( 1955; ). Preparation of buffers for use in enzyme studies. In Methods in Enzymology, vol. 1, pp. 138–146. Edited by S. P. Colowick & N. O. Kaplan. New York: Academic Press.
  6. Jeon, C. O., Lee, D. S. & Park, J. M. ( 2003; ). Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37, 2195–2205.[CrossRef]
    [Google Scholar]
  7. Jeon, C. O., Lim, J.-M., Lee, J.-M., Xu, L.-H., Jiang, C.-L. & Kim, C.-J. ( 2005; ). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55, 1891–1896.[CrossRef]
    [Google Scholar]
  8. Kämpfer, P., Schulze, R., Jäckel, U., Malik, K. A., Amann, R. & Spring, S. ( 2005; ). Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55, 341–344.[CrossRef]
    [Google Scholar]
  9. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  10. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  11. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester, UK: Wiley.
  12. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  13. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  14. Lim, J.-M., Jeon, C. O., Park, D.-J., Kim, H.-R., Yoon, B.-J. & Kim, C.-J. ( 2005; ). Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus. Int J Syst Evol Microbiol 55, 1027–1031.[CrossRef]
    [Google Scholar]
  15. Malik, K. A. & Schlegel, H. G. ( 1981; ). Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11, 63–67.[CrossRef]
    [Google Scholar]
  16. Palleroni, N. J. ( 1984; ). Genus I. Pseudomonas Migula 1894, 237AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  17. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Spring, S., Jäckel, U., Wagner, M. & Kämpfer, P. ( 2004; ). Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54, 99–106.[CrossRef]
    [Google Scholar]
  19. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  20. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  22. Willems, A., Busse, J., Goor, M., Pot, B., Falsen, E., Jantzen, E., Hoste, B., Gillis, M., Kersters, K. & other authors ( 1989; ). Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39, 319–333.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64629-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64629-0
Loading

Data & Media loading...

Transmission electron micrograph showing the general morphology of negatively stained cells of strain EMB71 . [PDF](177 KB)

PDF

Phylogenetic trees based on 16S rRNA gene sequences generated using maximum-likelihood and maximum-parsimony. [PDF](21 KB)

PDF

Cellular fatty acid compositions of strain EMB71 and related species and . [PDF](26 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error