1887

Abstract

A Gram-negative bacterium, designated strain EMB71, was isolated from activated sludge used for enhanced biological phosphorus removal in a sequencing batch reactor. The cells of the isolate were facultatively aerobic, motile rods with single polar flagella. Growth was observed to occur at 15–35 °C (optimally at 30 °C) and at pH 6.0–9.0 (optimally at pH 7.0–8.0). The predominant fatty acids of strain EMB71 were C and summed feature 3 (C 7 and/or iso-C 2-OH), and the polar lipids comprised a large amount of phosphatidylethanolamine and a small amount of diphosphatidylglycerol. The G+C content of the genomic DNA was 61.6 mol % and the major quinone was Q-8. Comparative 16S rRNA gene sequence analyses showed that strain EMB71 formed a phyletic lineage with the genus within the family . The levels of 16S rRNA gene sequence similarity with respect to the type strains of species ranged from 95.1 to 96.9 %. On the basis of the phenotypic, chemotaxonomic and molecular data, strain EMB71 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EMB71 (=KCTC 12613=DSM 17962).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64629-0
2007-05-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1126.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64629-0&mimeType=html&fmt=ahah

References

  1. Blümel S., Busse H.-J., Stolz A., Kämpfer P. 2001; Xenophilus azovorans gen nov., sp. nov a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 511831–1837 [CrossRef]
    [Google Scholar]
  2. Contzen M., Moore E. R., Blümel S., Stolz A., Kämpfer P. 2000; Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 23:487–493 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 2002 phylip (phylogeny inference package), version 3.6a. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Gomori G. 1955; Preparation of buffers for use in enzyme studies. In Methods in Enzymology vol. 1 pp  138–146 Edited by Colowick S. P., Kaplan N. O. New York: Academic Press;
    [Google Scholar]
  6. Jeon C. O., Lee D. S., Park J. M. 2003; Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37:2195–2205 [CrossRef]
    [Google Scholar]
  7. Jeon C. O., Lim J.-M., Lee J.-M., Xu L.-H., Jiang C.-L., Kim C.-J. 2005; Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896 [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Schulze R., Jäckel U., Malik K. A., Amann R., Spring S. 2005; Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  12. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  13. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  14. Lim J.-M., Jeon C. O., Park D.-J., Kim H.-R., Yoon B.-J., Kim C.-J. 2005; Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 55:1027–1031 [CrossRef]
    [Google Scholar]
  15. Malik K. A., Schlegel H. G. 1981; Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11:63–67 [CrossRef]
    [Google Scholar]
  16. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894, 237AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Spring S., Jäckel U., Wagner M., Kämpfer P. 2004; Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  22. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K. other authors 1989; Hydrogenophaga , a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb.nov. (formerly Pseudomonas flava ), Hydrogenophaga palleronii (formerly Pseudomonas palleronii ), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “ Pseudomonas carboxydoflava ”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis ). Int J Syst Bacteriol 39:319–333 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64629-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64629-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error