1887

Abstract

Two Gram-negative, chemoheterotrophic, non-motile strains, Mok-1-36 and MAOS-86, were isolated from marine-sediment samples collected from the coasts of Okinawa island and the city of Odawara in Japan, respectively. Phylogenetic studies based on 16S rRNA gene sequences indicated that Mok-1-36 and MAOS-86 were members of the family , clustering with members of the genera and , respectively. Strains Mok-1-36 and MAOS-86 shared pairwise 16S rRNA gene sequence similarities of 93.5 and 89.1 % with the type strains of and , respectively. Phylogenetic distinctiveness and phenotypic differences from their phylogenetic neighbours indicated that these strains represent two novel species and genera within the family , for which the names gen. nov., sp. nov. (MAOS-86) and gen. nov., sp. nov. (Mok-1-36) are proposed. The type strain of is MAOS-86 (=NBRC 101622=CIP 109285) and the type strain of is Mok-1-36 (=NBRC 101626=CIP 109286).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64628-0
2007-02-01
2021-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/265.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64628-0&mimeType=html&fmt=ahah

References

  1. Abell G. C. J., Bowman J. P. 2005; Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51:265–277 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1993 Manual for the Identification of Medical Bacteria , 3rd edn. London: Cambridge University Press;
    [Google Scholar]
  5. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rDNA on ‘hydrolink’ gels. J Microbiol Methods 30:145–154
    [Google Scholar]
  8. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  9. Minamisawa K. 1990; Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. Plant Cell Physiol 31:81–89
    [Google Scholar]
  10. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  11. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003; Vitellibacter vladivostokensis gen. nov., sp. nov. a new member of the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:1281–1286 [CrossRef]
    [Google Scholar]
  12. Nedashkovskaya O. I., Kim S. B., Han S. K., Rhee M. S., Lysenko A. M., Falsen E., Frolova G. M., Mikhailov V. V., Bae S. K. 2004; Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 54:119–123 [CrossRef]
    [Google Scholar]
  13. Perry L. B. 1973; Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol 36:227–232 [CrossRef]
    [Google Scholar]
  14. Reichenbach H. 1992; Flavobacteriaceae fam. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB . List No. 41. Int J Syst Bacteriol 42:327–329 [CrossRef]
    [Google Scholar]
  15. Rüger H.-J., Krambeck H.-J. 1994; Evaluation of the BIOLOG substrate metabolism system for classification of marine bacteria. Syst Appl Microbiol 17:281–288 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb.nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  18. Swofford D. L. 2000 paup*: Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64628-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64628-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error