sp. nov., a novel anaerobic -nitrophenol-degrading bacterium, isolated from a subsurface soil sample Free

Abstract

An obligate anaerobic, mesophilic, motile and endospore-forming bacterium, designated 1D, was isolated from a subsurface soil sample. The young culture of strain 1D was Gram-positive and formed oval spores that were central in position. Based on the biochemical, chemotaxonomic and physiological data, strain 1D appears to be a member of the genus . Strain 1D was found to be capable of degrading -nitrophenol (pNP) at a concentration of 0.5 mM under anaerobic conditions as revealed by HPLC analysis. The major fatty acids were C(28.02 %), iso-C I/anteiso B (23.05 %) and C (10.02 %). The major polar lipid content was diphosphatidylglycerol. Strain 1D showed highest 16S rRNA gene sequence similarity to JW/YJL-B3 (98.2 %) and similarity was less for ATCC 25775 (95.1 %), SL1 (95.0 %) and P7 (95.0 %). Phylogenetic analysis showed that it formed a coherent cluster with the species belonging to cluster I of the genus . The DNA G+C content was 35.5 mol%. DNA–DNA hybridization analysis indicated a mean value of 36.4 % between strain 1D and its closest relative . Several phenotypic differences from the closely related species were also revealed. On the basis of the polyphasic characteristics, strain 1D represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1D (=MTCC 7832=JCM 14030).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64604-0
2007-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1886.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64604-0&mimeType=html&fmt=ahah

References

  1. Broda D. M., Saul D. J., Lawson P. A., Bell R. G., Musgrave D. R. 2000a; Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat. Int J Syst Evol Microbiol 50:107–118 [CrossRef]
    [Google Scholar]
  2. Broda D. M., Saul D. J., Bell R. G., Musgrave D. R. 2000b; Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium. Int J Syst Evol Microbiol 50:623–631 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willems A., Cardoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Gorontzy T., Kuver J., Blotevogel K. H. 1993; Microbial transformation of nitroaromatic compounds under anaerobic conditions. J Gen Microbiol 139:1331–1336 [CrossRef]
    [Google Scholar]
  7. Hughes J. B., Wang C. W., Bhadra R., Richardson A., Bennett G. N., Rudolph F. 1998; Reduction of 2,4,6-trinitrotoluene by Clostridium acetobutylicum through hydroxylamino-nitrotoluene intermediates. Environ Toxicol Chem 17:343–348 [CrossRef]
    [Google Scholar]
  8. Hughes J. B., Chuan Y. W., Chunlong Z. 1999; Anaerobic biotransformation of 2,4-dinitrotoulene and 2,6-dinitrotoulene by Clostridium acetobutylicum : a pathway through dihydroxylamino intermediates. Environ Sci Technol 33:1065–1070 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Küsel K., Dorsch T., Acker G., Stackebrandt E., Drake H. L. 2000; Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50:537–546 [CrossRef]
    [Google Scholar]
  12. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  13. Lee Y.-J., Romanek C. S., Wiegel J. 2007; Clostridium aciditolerans sp. nov., an acid tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int J Syst Evol Microbiol 57:311–315 [CrossRef]
    [Google Scholar]
  14. Lewis T. A., Goszcynski S., Crawford R. L., Korus R. A., Admassu W. 1996; Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans . Appl Environ Microbiol 62:4669–4674
    [Google Scholar]
  15. Liou J. S.-C., Balkwill D. L., Drake G. R., Tanner R. S. 2005; Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1998; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. Mountfort D. O., Rhodes L. L. 1991; Anaerobic growth and fermentation characteristics of Paecilomyces lilacinus isolated from mullet gut. Appl Environ Microbiol 57:1963–1968
    [Google Scholar]
  19. Pandey K. K., Mayilraj S., Chakrabarti T. 2002; Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559–1567 [CrossRef]
    [Google Scholar]
  20. Sato N. S., Murata N. 1988; Membrane lipids. In Methods in Enzymology vol 167 pp 251–259 Edited by Packer L., Glazer A. N. New York: Academic Press;
    [Google Scholar]
  21. Schink B. 1984; Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch Microbiol 137:250–255 [CrossRef]
    [Google Scholar]
  22. Shin C. Y., Lewis T. A., Crawford D. L. 1997; In In Situ and On-Site Bioremediation . vol. 2 pp 23–29 Edited by Alleman B. C., Leeson A. Columbus: Battelle Press;
  23. Shivaji S., Rao N. S., Saisree L., Reddy G. S. N., Kumar G. S., Bhargava P. M. 1989; Isolates of Arthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229
    [Google Scholar]
  24. Shivaji S., Ray M. K., Rao N. S., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [CrossRef]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization: In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
  26. Spain J. C., Hughes J. B., Knackmuss H.-J. 2000 Biodegradation of Nitroaromatic Compounds and Explosives Boca Raton, FL: CRC Press LLC;
    [Google Scholar]
  27. Spring S., Merkhoffer B., Weiss N., Kroppenstedt R. M., Hippe H., Stackebrandt E. 2003 Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp.nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53, 1019–1029 [CrossRef]
  28. Suresh K., Reddy G. S. N., Sengupta S., Shivaji S. 2004; Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355
    [Google Scholar]
  31. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  33. Wilde E., Collins M. D., Hippe H. 1997; Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan. Int J Syst Evol Microbiol 47:164–170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64604-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64604-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed