1887

Abstract

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from a sulfidogenic fluidized-bed reactor treating acidic metal- and sulfate-containing water. The strain, designated RA50E1, was rod-shaped and motile. The strain grew at 40–67 °C (optimum growth at 59–61 °C) and pH 6.4–7.9 (optimum growth at pH 7.0–7.3). The strain tolerated up to 1 % NaCl. Sulfate, sulfite, thiosulfate and elemental sulfur were used as electron acceptors, but not nitrate, nitrite or iron(III). Electron donors utilized were H/CO (80 : 20, v/v), alcohols, various carboxylic acids and some sugars. Fermentative growth occurred on lactate and pyruvate. The cell wall contained -diaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone MK-7. Major whole-cell fatty acids were iso-C and iso-C. Strain RA50E1 was distantly related to representatives of the genera , , and . On the basis of 16S rRNA gene sequence data, the strain cannot be assigned to any known genus. Based on the phenotypic and phylogenetic features of strain RA50E1, it is proposed that the strain represents a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is RA50E1 (=DSM 16022=JCM 14018).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64593-0
2007-05-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1089.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64593-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; A basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp. nov. a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336 [CrossRef]
    [Google Scholar]
  3. Brauman A., Müller J. A., Garcia J.-L., Brune A., Schink B. 1998; Fermentative degradation of 3-hydroxybenzoate in pure culture by a novel strictly anaerobic bacterium, Sporotomaculum hydroxybenzoicum gen. nov., sp.. nov. Int J Syst Bacteriol 48:215–221 [CrossRef]
    [Google Scholar]
  4. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354
    [Google Scholar]
  7. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  8. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  9. Heimbrook M. E., Wang W. L. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615
    [Google Scholar]
  10. Henry E. A., Devereux R., Maki J. S., Gilmour C. C., Woese C. R., Mandelco L., Schauder R., Remsen C. C., Mitchell R. 1994; Thermodesulfovibrio yellowstonii , gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69 [CrossRef]
    [Google Scholar]
  11. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp. nov. an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  12. Juteau P., Côté V., Duckett M.-F., Beaudet R., Lépine F., Villemur R., Bisaillon J.-G. 2005; Cryptanaerobacter phenolicus gen. nov., sp. nov. an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Int J Syst Evol Microbiol 55:245–250 [CrossRef]
    [Google Scholar]
  13. Kaksonen A. H., Franzmann P. D., Puhakka J. A. 2003a; Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14:207–217 [CrossRef]
    [Google Scholar]
  14. Kaksonen A. H., Riekkola-Vanhanen M.-L., Puhakka J. A. 2003b; Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266 [CrossRef]
    [Google Scholar]
  15. Kaksonen A. H., Franzmann P. D., Puhakka J. A. 2004a; Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343 [CrossRef]
    [Google Scholar]
  16. Kaksonen A. H., Plumb J. J., Gibson J. A. E., Franzmann P. D., Puhakka J. A. 2004b; Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289 [CrossRef]
    [Google Scholar]
  17. Kaksonen A. H., Plumb J. J., Robertson W. J., Franzmann P. D., Gibson J. A. E., Puhakka J. A. 2004c; Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 21:469–480 [CrossRef]
    [Google Scholar]
  18. Kaksonen A. H., Plumb J. J., Robertson W. J., Spring S., Schumann P., Franzmann P. D., Puhakka J. A. 2006a; Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan. Appl Environ Microbiol 72:3759–3762 [CrossRef]
    [Google Scholar]
  19. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. 2006b; Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608 [CrossRef]
    [Google Scholar]
  20. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. 2007; Desulfovirgula thermocuniculi gen. nov., sp. nov. a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. Int J Syst Evol Microbiol 57:98–102 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  22. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (SAS Technical Series, no. 20) pp  173–179 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  25. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003 Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53569–576 [CrossRef]
  26. Mori K., Kim H., Kakegawa T., Hanada S. 2003; A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam.nov., Thermodesulfobium narugense , gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290 [CrossRef]
    [Google Scholar]
  27. Moussard H., L'Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A.-L., Jeanthon C. 2004; Thermodesulfatator indicus gen. nov., sp. nov. a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233 [CrossRef]
    [Google Scholar]
  28. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402 [CrossRef]
    [Google Scholar]
  29. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α , ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  30. Sass H., Overmann J., Rütters H., Babenzien H.-D., Cypionka H. 2004; Desulfosporomusa polytropa gen. nov., sp. nov. a novel sulfate-reducing bacterium from sediments of an oligotrophic lake. Arch Microbiol 182:204–211
    [Google Scholar]
  31. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Päuker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum : evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139 [CrossRef]
    [Google Scholar]
  32. Stookey L. L. 1970; Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42:779–781 [CrossRef]
    [Google Scholar]
  33. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  34. Zeikus J. G., Dawson M. A., Thompson T. E., Ingvorsen K., Hatchikian E. C. 1983; Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64593-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64593-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error