sp. nov., isolated from human faeces Free

Abstract

A bacterial strain isolated from human faeces, M-165, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus . Strain M-165 was closely related to strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165 were similar to those of , the isolate could be differentiated from by means of API 20A tests for -arabinose and -rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to JCM 9497 (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is M-165 (=JCM 13406=DSM 18315).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64588-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/293.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64588-0&mimeType=html&fmt=ahah

References

  1. Dewhirst F. E., Paster B. J., La Fontaine S., Rood J. I. 1990; Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium , Dichelobacter , and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int J Syst Bacteriol 40:426–433 [CrossRef]
    [Google Scholar]
  2. Eggerth A. H., Gagnon B. H. 1933; The Bacteroides of human feces. J Bacteriol 25:389–413
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  6. Johnson J. L., Moore W. E. C., Moore L. V. H. 1986; Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. . Int J Syst Bacteriol 36:499–501 [CrossRef]
    [Google Scholar]
  7. Jousimies-Somer H., Summanen P. 2002; Recent taxonomic changes and terminology update of clinically significant anaerobic gram-negative bacteria (excluding spirochetes). Clin Infect Dis 35 (Suppl. 1):)S17–S21 [CrossRef]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  10. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  11. Liu C., Song Y., McTeague M., Vu A. W., Wexler H., Finegold S. M. 2003; Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett 222:9–16 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  14. Moore L. V. H., Moore W. E. C. 1994; Oribaculum catoniae gen. nov., sp. nov.; Catonella morbi gen. nov., sp. nov.; Hallella seregens gen. nov., sp. nov.; Johnsonella ignava gen. nov., sp. nov.; and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic gram-negative bacilli from the human gingival crevice. Int J Syst Bacteriol 44:187–192 [CrossRef]
    [Google Scholar]
  15. Rautio M., Eerola E., Väisänen-Tunkelrott M. L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H. 2003; Reclassification of Bacteroides putredinis (Weinberg et al . 1937) in a new genus Alistipes gen.nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol 26:182–188 [CrossRef]
    [Google Scholar]
  16. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Sakamoto M., Benno Y. 2006; Reclassification of Bacteroides distasonis , Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen.nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56:1599–1605 [CrossRef]
    [Google Scholar]
  19. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  20. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2005; Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55:815–819 [CrossRef]
    [Google Scholar]
  21. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes , 2nd edn. pp  3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  22. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87 [CrossRef]
    [Google Scholar]
  23. Song Y., Liu C., Lee J., Bolanos M., Vaisanen M. L., Finegold S. M. 2005; Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527 [CrossRef]
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64588-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64588-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed