1887

Abstract

A Gram-negative, motile, rod-shaped bacterium, designated strain EMB325, was isolated from activated sludge that performed enhanced biological phosphorus removal in a sequencing batch reactor. The predominant fatty acids of strain EMB325 were summed feature 3 (C 7 and/or iso-C 2-OH), C, C 7 and C 7 11-methyl. The strain contained phosphatidylethanolamine and diphosphatidylglycerol as polar lipids. The G+C content of the genomic DNA was 63.3 mol%. The major quinone was Q-8. Phylogenetic analysis of 16S rRNA gene sequences showed that strain EMB325 formed a phyletic lineage with members of the genus and was most closely related to LMG 5408 and DSM 1837 with similarities of 98.1 and 97.9 %, respectively. Levels of DNA–DNA relatedness between strain EMB325 and LMG 5408 and DSM 1837 were 28 and 23 %, respectively. On the basis of chemotaxonomic data and molecular characteristics, strain EMB325 is considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is EMB325 (=KCTC 12608=DSM 17964).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64566-0
2007-01-01
2021-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/31.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64566-0&mimeType=html&fmt=ahah

References

  1. Cole J. R., Chai B., Marsh T. L., Farris R. J., Wang Q., Kulam S. A., Chandra S., McGarrell D. M., Schmidt T. M. other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  2. Felsenstein J. 2002 phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  3. Gerhardt P., Murray R. G. M., Wood W. A., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146
    [Google Scholar]
  5. Grabovich M., Gavrish E., Kuever J., Lysenko A. M., Podkopaeva D., Dubinina G. 2006; Proposal of Giesbergeria voronezhensis gen.nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [ Aquaspirillum ] anulus , [ A .] sinuosum and [ A .] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [ Aquaspirillum ] metamorphum and [ A .] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov.. Int J Syst Evol Microbiol 56:569–576 [CrossRef]
    [Google Scholar]
  6. Hylemon P. B., Wells J. S. Jr, Krieg N. R., Jannasch H. W. 1973; The genus Spirillum : a taxonomic study. Int J Syst Bacteriol 23:340–380 [CrossRef]
    [Google Scholar]
  7. Jeon C. O., Lee D. S., Park J. M. 2003; Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37:2195–2205 [CrossRef]
    [Google Scholar]
  8. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. 2004; Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97 [CrossRef]
    [Google Scholar]
  9. Jeon C. O., Lim J.-M., Lee J.-M., Xu L.-H., Jiang C.-L., Kim C.-J. 2005; Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896 [CrossRef]
    [Google Scholar]
  10. Khan S. T., Hiraishi A. 2002; Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48:299–308 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  14. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  15. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  16. Lim J. M., Jeon C. O., Park D. J., Kim H. R., Yoon B. J., Kim C. J. 2005; Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 55:1027–1031 [CrossRef]
    [Google Scholar]
  17. Lu S., Park M., Ro H.-S., Lee D. S., Park W., Jeon C. O. 2006; Analysis of microbial communities using culture-dependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. J Microbiol 44:155–161
    [Google Scholar]
  18. Mechichi T., Stackebrandt E., Fuchs G. 2003; Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β -proteobacterium. Int J Syst Evol Microbiol 53:147–152 [CrossRef]
    [Google Scholar]
  19. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  22. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax , a new genus for Pseudomonas facilis , Pseudomonas delafieldii , E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb.nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64566-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64566-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error