1887

Abstract

Strain UST040317-058, comprising non-pigmented, rod-shaped, facultatively anaerobic, Gram-negative cells that are motile by means of single polar flagella, was isolated from the surface of a marine sponge () collected from the Mediterranean Sea. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a separate cluster with the recognized bacterium IAM 14159, with which it showed a sequence similarity of 95.0 %. The sequence similarity between strain UST040317-058 and its other (six) closest relatives ranged from 91.6 to 93.8 %. Strain UST040317-058 showed oxidase, catalase and gelatinase activities. The typical respiratory quinones for shewanellas, menaquinone MK-7 and ubiquinones Q-7 and Q-8, were also detected. The predominant fatty acids in strain UST040317-058 were i15 : 0, 16 : 0, 17 : 18 and summed feature 3 (comprising i15 : 0 2-OH and/or 16 : 17), altogether representing 56.9 % of the total. The DNA G+C content was 39.9 mol%. The strain could be differentiated from other species by its inability to reduce nitrate or produce HS and by 10–22 additional phenotypic characteristics. On the basis of the phylogenetic and phenotypic data presented in this study, strain UST040317-058 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is UST040317-058 (=JCM 13528=NRRL B-41466).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64562-0
2006-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2871.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64562-0&mimeType=html&fmt=ahah

References

  1. Acar J. F. 1980; The disc susceptibility test. In Antibiotics in Laboratory and Medicine pp  24–54 Edited by Lorian V. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Allan V. J. M., Callow M. E., Macaskie L. E., Paterson-Beedle M. 2002; Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp. Microbiology 148:277–288
    [Google Scholar]
  3. Baumann P., Baumann L. 1981; The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes . In The Prokaryotes vol. 1 pp  1302–1331 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. Berlin: Springer;
    [Google Scholar]
  4. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov. novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  6. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp  265–310 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  7. Coyne V. E., Pillidge C. J., Sledjeski D. D., Hori H., Ortiz-Conde B. A., Muir D. G., Weiner R. M., Colwell R. R. 1989; Reclassification of Alteromonas colwelliana to the genus Shewanella by DNA-DNA hybridization, serology and 5S ribosomal RNA sequence data. Syst Appl Microbiol 12:275–279 [CrossRef]
    [Google Scholar]
  8. Debois J., Degreef H., Vandepitte J., Spaepen J. 1975; Pseudomonas putrefaciens as a cause of infection in humans. J Clin Pathol 28:993–996 [CrossRef]
    [Google Scholar]
  9. Gao M., Liu H., Yang M., Hu J., Shao B. 2004; Indirect identification of isoprenoid quinones in Escherichia coli by LC-MS with atmospheric pressure chemical ionization in negative mode. J Basic Microbiol 44:424–429 [CrossRef]
    [Google Scholar]
  10. Holmes B., Lapage S. P., Malnick H. 1975; Strains of Pseudomonas putrefaciens from clinical material. J Clin Pathol 28:149–155 [CrossRef]
    [Google Scholar]
  11. Isnansetyo A., Kamei Y. 2003; Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. Int J Syst Evol Microbiol 53:583–588 [CrossRef]
    [Google Scholar]
  12. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  13. Ivanova E. P., Nedashkovskaya O. I., Zhukova N. V., Nicolau D. V., Christen R., Mikhailov V. V. 2003; Shewanella waksmanii sp. nov., isolated from a sipuncula ( Phascolosoma japonicum ). Int J Syst Evol Microbiol 53:1471–1477 [CrossRef]
    [Google Scholar]
  14. Ivanova E. P., Gorshkova N. M., Bowman J. P., Lysenko A. M., Zhukova N. V., Sergeev A. F., Mikhailov V. V., Nicolau D. V. 2004a; Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087 [CrossRef]
    [Google Scholar]
  15. Ivanova E. P., Nedashkovskaya O. I., Sawabe T., Zhukova N. V., Frolova G. M., Nicolau D. V., Mikhailov V. V., Bowman J. P. 2004b; Shewanella affinis sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 54:1089–1093 [CrossRef]
    [Google Scholar]
  16. Ivanova E. P., Flavier S., Christen R. 2004c; Phylogenetic relationships among marine Alteromonas -like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam.nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788 [CrossRef]
    [Google Scholar]
  17. Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K. H. 1980; Characterization of Alteromonas hanehai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315 [CrossRef]
    [Google Scholar]
  18. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Wu M., Wong P. K., Qian P. Y. 2004; Loktanella hongkongensis sp. nov., a novel member of the α - Proteobacteria originating from marine biofilms in Hong Kong waters. Int J Syst Evol Microbiol 54:2281–2284 [CrossRef]
    [Google Scholar]
  19. Lee J. V., Gibson D. M., Shewan J. M. 1981; Alteromonas putrefaciens sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB List no. 6. Int J Syst Bacteriol 31:215–218 [CrossRef]
    [Google Scholar]
  20. Levin R. E. 1972; Correlation of DNA base composition and metabolism of Pseudomonas putrefaciens isolates from food, human clinical specimens, and other sources. Antonie van Leeuwenhoek 38:121–127 [CrossRef]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  22. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  23. MacDonell M. T., Singleton F. L., Hood M. A. 1982; Diluent composition for use of API 20E in characterizing marine and estuarine bacteria. Appl Environ Microbiol 44:423–427
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321 [CrossRef]
    [Google Scholar]
  26. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  27. Nedashkovskaya O. I., Kim S. B., Hans S. K. 7 other authors 2003 Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int J Syst Evol Microbiol 531967–1971 [CrossRef]
  28. Neu B., Voigt A., Mitlohner R. 7 other authors 2001; Biological cells as templates for hollow microcapsules. J Microencapsul 18:385–395 [CrossRef]
    [Google Scholar]
  29. Norris J. R., Ribbons D. W., Varma A. K. (editors) 1985 Methods in Microbiology vol. 18 London: Academic Press;
    [Google Scholar]
  30. Petrovskis E. A., Vogel T. M., Adriaens P. 1994; Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 121:357–364 [CrossRef]
    [Google Scholar]
  31. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  32. Semple K. M., Westlake D. W. S. 1987; Characterization of iron-reducing Alteromonas putrefaciens from oil field fluids. Can J Microbiol 33:366–371 [CrossRef]
    [Google Scholar]
  33. Simidu U., Kita-Tsukamoto K., Yasumoto K., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336 [CrossRef]
    [Google Scholar]
  34. Skerratt J. H., Bowman J. P., Nichols P. D. 2002; Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106 [CrossRef]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characteristics. In Methods for General and Molecular Biology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  37. Venkateswaran K., Dollhopf M. E., Aller R., Stackebrandt E., Nealson K. H. 1998; Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48:965–972 [CrossRef]
    [Google Scholar]
  38. Wichels A., Würtz S., Döpke H., Schütt C., Gerdts G. 2006; Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol Ecol 56:102–118 [CrossRef]
    [Google Scholar]
  39. Xu M., Guo J., Cen Y., Zhong X., Cao W., Sun G. 2005; Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 55:363–368 [CrossRef]
    [Google Scholar]
  40. Yoon J. H., Kang K. H., Oh T. K., Park Y. H. 2004a; Shewanella gaetbuli sp. nov., a slight halophile isolated from a tidal flat in Korea. Int J Syst Evol Microbiol 54:487–491 [CrossRef]
    [Google Scholar]
  41. Yoon J. H., Yeo S. H., Kim I. G., Oh T. K. 2004b; Shewanella marisflavi sp. nov. and Shewanella aquimarina sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:2347–2352 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64562-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64562-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error