gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete Free

Abstract

A novel, Gram-negative, non-motile, non-sporulating, rod-shaped bacterium isolated from a viscous two-phase olive-oil mill waste (‘alpeorujo’) is described. The strain, designated AW-6, is an obligate aerobe, forming irregular, pigmented creamy white colonies. The pH and temperature ranges for growth were pH 5–8 and 5–45 °C, with optimal pH and temperature for growth of pH 6–7 and 28–32 °C, respectively. Strain AW-6 was chemo-organotrophic and utilized mostly (+)-glucose, protocatechuate and (+)-xylose, followed by -cysteine, (−)-fructose, (+)-galactose, -histidine, lactose, sorbitol and sucrose. Menaquinone-7 was detected in the respiratory chain of strain AW-6. The major fatty acids of strain AW-6 were C 7 and/or iso-C 2-OH, iso-C, iso-C 3-OH and C. The closest phylogenetic relative of strain AW-6 was clone BIti35 (89.7 % 16S rRNA gene sequence similarity), while DSM 11723 was the closest recognized relative within the (88.2 % similarity). Strain AW-6 showed a low level of DNA–DNA relatedness to DSM 11723 (33.8–37.0 %). The DNA G+C content of strain AW-6 was 45.6 mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain AW-6 from members of the genera and . Thus, strain AW-6 is considered to represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is AW-6 (=DSM 17696=CECT 7133).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64561-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/398.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64561-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  2. Cavalli-Sforza L. L., Edwards A. W. F. 1967; Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257
    [Google Scholar]
  3. Chamkha M., Labat M., Patel B. K. C., Garcia J. L. 2001; Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. Int J Syst Evol Microbiol 51:2049–2054 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.6. Department of Genome Sciences and Department of Biology University of Washington; Seattle, USA:
    [Google Scholar]
  6. Friedrich U., Prior K., Altendorf K., Lipski A. 2002; High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 4:721–734 [CrossRef]
    [Google Scholar]
  7. Gallego V., García M. T., Ventosa A. 2006; Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter . Int J Syst Evol Microbiol 56:1853–1858 [CrossRef]
    [Google Scholar]
  8. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  9. Hwang C. Y., Choi D. H., Cho B. C. 2006; Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter . Int J Syst Evol Microbiol 56:1831–1836 [CrossRef]
    [Google Scholar]
  10. Jacobi C. A., Reichenbach H., Tindall B. J., Stackebrandt E. 1996; Candidatus comitans’, a bacterium living in coculture with Chondromyces crocatus (myxobacteria. Int J Syst Bacteriol 46:119–122 [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  13. Kanaly R. A., Harayama S., Watanabe K. 2002; Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833 [CrossRef]
    [Google Scholar]
  14. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of the anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  15. Koussemon M., Combet-Blanc Y., Patel B. K. C., Cayol J. L., Thomas P., Garcia J. L., Ollivier B. 2001; Propionibacterium microaerophilum sp. nov., a microaerophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 51:1373–1382
    [Google Scholar]
  16. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series no. 20) pp  173–199 Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  17. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  18. Margesin R., Sproer C., Schumann P., Schinner F. 2003; Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296 [CrossRef]
    [Google Scholar]
  19. Mechichi T., Labat M., Garcia J. L., Thomas P., Patel B. K. C. 1999; Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1741–1748 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  22. Ntougias S., Russell N. J. 2000; Bacillus sp. WW3-SN6, a novel facultatively alkaliphilic bacterium isolated from the washwaters of edible olives. Extremophiles 4:201–208 [CrossRef]
    [Google Scholar]
  23. Ntougias S., Russell N. J. 2001; Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 51:1161–1170 [CrossRef]
    [Google Scholar]
  24. Ntougias S., Zervakis G. I., Ehaliotis C., Kavroulakis N., Papadopoulou K. K. 2006; Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res Microbiol 157:376–385 [CrossRef]
    [Google Scholar]
  25. Rohlf F. J. 2000 NTSYSpc (Numerical Taxonomy and Multivariate Analysis System), version 2.1. Department of Ecology and Evolution, State University of New York, Stony Brook NY, USA, and Exeter Software, NY: and Applied Biostatistics Inc; Port Jefferson, NY, USA:
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Shivaji S., Ray M. K., Rao N. S., Saisree L., Jagannadham M. V., Kumar G. S., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [CrossRef]
    [Google Scholar]
  28. Shivaji S., Chaturvedi P., Reddy G. S. N., Suresh K. 2005; Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088 [CrossRef]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  31. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb.nov., Sphingobacterium thalpophilum comb. nov. and 2genospecies of the genus Sphingobacterium , and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [CrossRef]
    [Google Scholar]
  32. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  33. Ten L. N., Liu Q. M., Im W. T., Lee M., Yang D. C., Lee S. T. 2006; Pedobacter ginsengisoli sp. nov., a DNase-producing bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2565–2570 [CrossRef]
    [Google Scholar]
  34. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  35. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  36. Van de Peer Y., de Wachter R. 1993; treecon: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9:177–182
    [Google Scholar]
  37. Vanparys B., Heylen K., Lebbe L., De Vos P. 2005; Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1315–1318 [CrossRef]
    [Google Scholar]
  38. Wilson K. 1992; Preparation of genomic DNA from bacteria. In Short Protocols in Molecular Biology pp. 2–10–2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley & Sons;
    [Google Scholar]
  39. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb.nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33:580–598 [CrossRef]
    [Google Scholar]
  40. Yoon J.-H., Lee M.-H., Kang S.-J., Park S.-Y., Oh T.-K. 2006; Pedobacter sandarakinus sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:1273–1277 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64561-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64561-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed