gen. nov., sp. nov., isolated from decaying leaf litter from a pine forest Free

Abstract

An aerobic bacterium, designated strain E1HC-02, was isolated from the decaying leaf litter of a slash pine forest located in southeast Queensland, Australia. Cells of strain E1HC-02 were short irregular rods (0.5–1.0×0.2–0.4 μm) which stained Gram-positive and possessed a cell-wall ultrastructure which appeared to be made of protein subunits. The novel strain grew optimally in 1 % trypticase soy broth (TSB) at 25 °C and at a pH of 9.1. Strain E1HC-02 metabolized a range of carbohydrates, organic acids and amino acids. The G+C content of the DNA was 71±1 mol% as determined by the thermal denaturation method. 16S rRNA gene sequence analysis of strain E1HC-02 showed that it was a member of the family , phylum . The cell wall contained a type B2 peptidoglycan, the dominant cellular fatty acid was 18 : 17 and the major hydroxy fatty acid was 2-OH 14 : 0. The major menaquinones were MK-8 (76 %) and MK-7 (24 %) and the glycolipids present were disphosphatidylglycerol, phosphatidylglycerol and three unidentified phospholipids. The chemotaxonomic properties of strain E1HC-02 were distinctly different to all of the 17 genera of the family and hence strain E1HC-02 is designated as representing a novel species of a new genus, gen. nov., sp. nov. The type strain of the type species is E1HC-02 (=JCM 13598=DSM 17894).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64560-0
2007-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1177.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64560-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [CrossRef]
    [Google Scholar]
  3. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam S. A., McGarrell D. M., Garrity G. M., Tiedje J. M. 2005; The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33: (Database issue), D294–D296
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–123 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  7. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E. L., Ulrych U., Busse H. J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [CrossRef]
    [Google Scholar]
  8. Kanso S., Patel B. K. C. 2003; Microvirga subterranea gen nov., sp. nov a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53401–406 [CrossRef]
    [Google Scholar]
  9. Kim B. C., Park J. R., Bae J. W., Rhee S. K., Kim K. H., Oh J. W., Park Y. H. 2006; Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 56:75–79 [CrossRef]
    [Google Scholar]
  10. MacKenzie S. L. 1984; Amino acids and peptides. In Gas Chromatography/Mass Spectrometry Applications in Microbiology pp  157–204 Edited by Odham G., Larsson L., Mardh P. New York: Plenum;
    [Google Scholar]
  11. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  12. Marmur J., Doty P. 1961; Thermal renaturation of deoxyribonucleic acids. J Mol Biol 3:585–594 [CrossRef]
    [Google Scholar]
  13. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., del Moral A., Béjar V. 2004; Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α - Proteobacteria . Int J Syst Evol Microbiol 54:1735–1740 [CrossRef]
    [Google Scholar]
  14. Messner P., Sleytr U. B. 1992; Crystalline bacterial cell-surface layers. Adv Microb Physiol 33:213–275
    [Google Scholar]
  15. Miteva V. I., Sheridan P. P., Brenchley J. E. 2004; Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213 [CrossRef]
    [Google Scholar]
  16. Rhuland L. E., Work E., Denman F. R., Hoare D. S. 1955; The behavior of the isomers of α , ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  19. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  20. Sharma S., Aneja M. K., Mayer J., Munch J. C., Schloter M. 2005; Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microb Ecol 49:407–415 [CrossRef]
    [Google Scholar]
  21. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze etching, metal-shadowing, negative staining and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  22. Spanevello M. D., Yamamoto H., Patel B. K. C. 2002; Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter . Int J Syst Evol Microbiol 52:795–800 [CrossRef]
    [Google Scholar]
  23. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  24. Van de Peer Y., Jansen J., De Rijk P., De Wachter P. 1997; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25:111–116 [CrossRef]
    [Google Scholar]
  25. Wardle D. A., Yeates G. W., Barker G. M., Bonner K. I. 2006; The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062 [CrossRef]
    [Google Scholar]
  26. Xu L. H., Li Q. R., Jiang C. L. 1996; Diversity of soil actinomycetes in Yunnan, China. Appl Environ Microbiol 62:244–248
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64560-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64560-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed