1887

Abstract

Three strains of a trypanosomatid protozoan were isolated from the midguts of two naturally infected species of biting midges [ () and () ] and characterized by light and electron microscopy and by molecular techniques. Morphological characteristics and sequences of the 18S rRNA, 5S rRNA, spliced leader RNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase genes indicate that the studied flagellates represent a novel phylogenetic lineage within the Trypanosomatidae. Based on phylogenetic analyses, the novel endosymbiont-free, monoxenous trypanosomatid was classified as gen. nov., sp. nov. Interestingly, it is closely related to another trypanosomatid species that parasitizes the sand fly , a blood-sucking dipteran from South America. The type strain of sp. nov., ICUL/CZ/2000/CER3, was obtained from Malpighian tubes. Of 2518 females of seven species of biting midges trapped in the Czech Republic, more than 1.5 % were infected by trypanosomatid parasites. An unrelated insect species, () , was experimentally infected with , demonstrating that its host range extends to different subgenera of biting midges.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64557-0
2007-02-01
2021-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/423.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64557-0&mimeType=html&fmt=ahah

References

  1. Abreu Filho B. A., Dias Filho B. P., Vermelho A. B., Jankevicius S. I., Jankevicius J. V., dos Santos R. L. 2001; Surface component characterization as taxonomic tools for Phytomonas spp. identification. Parasitol Res 87:138–144 [CrossRef]
    [Google Scholar]
  2. Bastin P., Pullen T. J., Moreira-Leite F. F., Gull K. 2000; Inside and outside of the trypanosome flagellum: a multifunctional organelle. Microbes Infect 2:1865–1874 [CrossRef]
    [Google Scholar]
  3. d'Ávila-Levy C. M., Araújo F. M., Vermelho A. B., Branquinha M. H., Alviano C. S., Soares R. M. A., dos Santos A. L. S. 2004; Differential lectin recognition of glycoproteins in choanomastigote-shaped trypanosomatids: taxonomic implications. FEMS Microbiol Lett 231:171–176 [CrossRef]
    [Google Scholar]
  4. Dollet M., Sturm N. R., Sanchéz-Moreno M., Campbell D. A. 2000; 5S ribosomal RNA gene repeat sequences define at least eight groups of plant trypanosomatids ( Phytomonas spp.): phloem-restricted pathogens form a distinct section. J Eukaryot Microbiol 47:569–574 [CrossRef]
    [Google Scholar]
  5. Fernandes O., Teixeira M. M. G., Sturm N. R., Sousa M. A., Camargo E. P., Degrave W. M., Campbell D. A. 1997; Mini-exon gene sequences define six groups within the genus Crithidia . J Eukaryot Microbiol 44:535–539
    [Google Scholar]
  6. Fernandes O., Santos S. S., Cupolillo E., Mendonca B., Derre R., Junqueira A. C. V., Santos L. C., Sturm N. R., Naiff R. D. other authors 2001; A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Trans R Soc Trop Med Hyg 95:97–99 [CrossRef]
    [Google Scholar]
  7. Gadelha C., Wickstead B., de Souza W., Gull K., Cunha-e-Silva N. 2005; Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot Cell 4:516–525 [CrossRef]
    [Google Scholar]
  8. Guindon S., Gascuel O. 2003; A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  9. Hamilton P. B., Stevens J. R., Gaunt M. W., Gidley J., Gibson W. C. 2004; Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol 34:1393–1404 [CrossRef]
    [Google Scholar]
  10. Hoare C. A., Wallace F. G. 1966; Developmental stages of trypanosomatid flagellates: a new terminology. Nature 212:1385–1386 [CrossRef]
    [Google Scholar]
  11. Hollar L., Lukeš J., Maslov D. A. 1998; Monophyly of endosymbiont containing trypanosomatids: phylogeny versus taxonomy. J Eukaryot Microbiol 45:293–297 [CrossRef]
    [Google Scholar]
  12. Jiménez M. I., López-Vélez R., Molina R., Cañavate C., Alvar J. 1996; HIV-coinfection with a currently non-pathogenic flagellate. Lancet 347:264–265
    [Google Scholar]
  13. Lukeš J., Votýpka J. 2000; Trypanosoma avium : novel features of the kinetoplast structure. Exp Parasitol 96:178–181 [CrossRef]
    [Google Scholar]
  14. Lukeš J., Jirků M., Doležel D., Král'ová I., Hollar L., Maslov D. A. 1997; Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J Mol Evol 44:521–527 [CrossRef]
    [Google Scholar]
  15. Merzlyak E., Yurchenko V., Kolesnikov A. A., Alexandrov K., Podlipaev S. A., Maslov D. A. 2001; Diversity and phylogeny of insect trypanosomatids based on small subunit rDNA genes: polyphyly of Leptomonas and Blastocrithidia . J Eukaryot Microbiol 48:161–169 [CrossRef]
    [Google Scholar]
  16. Miranda K., Docampo R., Grillo O., de Souza W. 2004; Acidocalcisomes of trypanosomatids have species-specific elemental composition. Protist 155:395–405 [CrossRef]
    [Google Scholar]
  17. Momen H. 2001; Some current problems in the systematics of Trypanosomatids. Int J Parasitol 31:640–642 [CrossRef]
    [Google Scholar]
  18. Podlipaev S. A. 1990; Catalogue of world fauna of Trypanosomatidae (Protozoa). Proc Zool Inst Leningrad 144:1–178
    [Google Scholar]
  19. Podlipaev S. A. 2000; Insect trypanosomatids: the need to know more. Mem I Oswaldo Cruz 95:517–522 [CrossRef]
    [Google Scholar]
  20. Podlipaev S. A., Sturm N. R., Fiala I., Fernandes O., Westenberger S. J., Dollet M., Campbell D. A., Lukeš J. 2004a; Diversity of insect trypanosomatids assessed from the spliced leader RNA and 5S rRNA genes and intergenic regions. J Eukaryot Microbiol 51:283–290 [CrossRef]
    [Google Scholar]
  21. Podlipaev S. A., Votýpka J., Jirků M., Svobodová M., Lukeš J. 2004b; Herpetomonas ztiplika n. sp. (Kinetoplastida: Trypanosomatidae): a parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae). J Parasitol 90:342–347 [CrossRef]
    [Google Scholar]
  22. Poinar G. Jr, Poinar R. 2004; Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae : Kinetoplastida) from Cretaceous Burmese amber.. Protist 155:305–310 [CrossRef]
    [Google Scholar]
  23. Poinar G. Jr, Poinar R. 2005; Fossil evidence of insect pathogens. J Invertebr Pathol 89:243–250 [CrossRef]
    [Google Scholar]
  24. Santos D. O., Bourguignon S. C., Castro C. H., Silva J. S., Franco L. S., Hespanhol R., Soares M. J., Corte-Real S. 2004; Infection of mouse dermal fibroblasts by the monoxenous trypanosomatid protozoa Crithidia deanei and Herpetomonas roitmani . J Eukaryot Microbiol 51:570–574 [CrossRef]
    [Google Scholar]
  25. Santos A. L. S., Abreu C. M., Alviano C. S., Soares R. M. A. 2005; Use of proteolytic enzymes as an additional tool for trypanosomatid identification. Parasitology 130:79–88 [CrossRef]
    [Google Scholar]
  26. Simpson A. G. B., Lukeš J., Roger A. J. 2002; The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083 [CrossRef]
    [Google Scholar]
  27. Simpson A. G. B., Stevens J. R., Lukeš J. 2006; The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22:168–174 [CrossRef]
    [Google Scholar]
  28. Stevens J. R. 2001; One million insects – a lot of parasites?. Trends Parasitol 17:119–120
    [Google Scholar]
  29. Stevens J. R., Noyes H. A., Schofield C. J., Gibson W. 2001; The molecular evolution of Trypanosomatidae. Adv Parasitol 48:1–56
    [Google Scholar]
  30. Swofford D. L. 2001 paup*. Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Vickerman K. 1994; The evolutionary expansion of the trypanosomatid flagellates. Int J Parasitol 24:1317–1331 [CrossRef]
    [Google Scholar]
  33. Votýpka J., Oborník M., Volf P., Svobodová M., Lukeš J. 2002; Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology 125:253–263
    [Google Scholar]
  34. Wallace F. G. 1966; The trypanosomatid parasites of insects and arachnids. Exp Parasitol 18:124–193 [CrossRef]
    [Google Scholar]
  35. Wallace F. G., Camargo E. P., McGhee R. B., Roitman I. 1983; Guidelines for the description of new species of lower trypanosomatids. J Protozool 30:308–313 [CrossRef]
    [Google Scholar]
  36. Westenberger S. J., Sturm N. R., Yanega D., Podlipaev S. A., Zeledón R., Campbell D. A., Maslov D. A. 2004; Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129:537–547 [CrossRef]
    [Google Scholar]
  37. Yurchenko V., Lukeš J., Xu X., Maslov D. A. 2006; An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae. J Eukaryot Microbiol 53:103–111 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64557-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64557-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error