sp. nov. and sp. nov., from a hard-water creek Free

Abstract

Ten new -like strains were isolated from freshwater of the hard-water creek Westerhöfer Bach, northern Germany. These strains formed two phylogenetic groups: strains WB 1.1-56, WB 1.1-04, WB 1.1-14, WB 1.1-57 and WB 1.1-63; and strains WB 4.2-33, WB 4.1-86, WB 4.2-34, WB 4.2-32 and WB 4.2-78. Cells were Gram-negative, yellow-pigmented, chemoheterotrophic rods. Their major fatty acid profiles were similar, consisting of iso-C, iso-C 3-OH, iso-C 3-OH and summed feature 3 (C 7 and/or iso-C 2-OH). DNA G+C contents for strains WB 1.1-56 and WB 4.2-33 were 33.5 and 37.5 mol%, respectively. Phylogenetic analysis based on almost complete 16S rRNA gene sequences indicated that strain WB 1.1-56 was phylogenetically most closely related to KUC-1, and that strain WB 4.2-33 was related most closely to KUC-1 and DSM 1811. Levels of 16S rRNA gene sequence similarity between strains WB 1.1-56 and WB 4.2-33 and the type strains of recognized members of the genus were below 98 %. DNA–DNA hybridization experiments confirmed the separate genomic status of strains WB 1.1-56 and WB 4.2-33. Strains WB 1.1-56 and WB 4.2-33 and their respective relatives differed from phylogenetically related species based on several phenotypic characteristics. On the basis of their phenotypic and phylogenetic distinctiveness, the two groups of strains are considered to represent two novel species, for which the names sp. nov. (type strain WB 1.1-56=DSM 18293=CIP 109242) and sp. nov. (type strain WB 4.2-33=DSM 18292=CIP 109241) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64556-0
2007-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/243.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64556-0&mimeType=html&fmt=ahah

References

  1. Anacker R. L., Ordal E. J. 1955; Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris . J Bacteriol 70:738–741
    [Google Scholar]
  2. Aslam Z., Im W.-T., Kim M. K., Lee S.-T. 2005; Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int J Syst Evol Microbiol 55:747–751 [CrossRef]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  4. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M. (editors) 1923 Bergey's Manual of Determinative Bacteriology Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Bernardet J.-F., Bowman J. P. 2005 The genus Flavobacterium . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , release 3.20 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  6. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  7. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  8. Brambilla E., Päuker O., Cousin S., Steiner U., Reimer A., Stackebrandt E. 2007 High phylogenetic diversity of Flavobacterium spp. in a hardwater creek Harz Mountain, Germany: Org Divers Evol (in press);
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  11. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  12. DSMZ 2001 Catalogue of Strains , 7th edn. Braunschweig, Germany: DSMZ; http://www.dsmz.de
    [Google Scholar]
  13. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5.1. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  16. Frank-Kamenetskii F. 1971; Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers 10:2623–2624 [CrossRef]
    [Google Scholar]
  17. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. R. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Horn M. A., Ihssen J., Matthies C., Schramm A., Acker G., Drake H. L. 2005; Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa . Int J Syst Evol Microbiol 55:1255–1265 [CrossRef]
    [Google Scholar]
  19. Humphry D. R., George A., Black G. W., Cummings S. P. 2001; Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243
    [Google Scholar]
  20. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  22. Kim B.-Y., Weon H. Y., Cousin S., Yoo S.-H., Kwon S.-W., Go S. J., Stackebrandt E. 2006; Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:1635–1638 [CrossRef]
    [Google Scholar]
  23. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp.nov. and Flavobacterium xanthum sp. nov., nom.rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063 [CrossRef]
    [Google Scholar]
  24. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  25. Nogi Y., Soda K., Oikawa T. 2005; Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst Appl Microbiol 28:310–315 [CrossRef]
    [Google Scholar]
  26. O'Sullivan L. A., Rinna J., Humphreys G., Weightman A. J., Fry J. C. 2006; Culturable phylogenetic diversity of the phylum ‘ Bacteroidetes ’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae : Epilithonimonas tenax gen.nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov.. Int J Syst Evol Microbiol 56:169–180 [CrossRef]
    [Google Scholar]
  27. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  28. Reichenbach H., Dworkin M. 1981; Introduction to the gliding bacteria. In The Prokaryotes vol 1 pp  315–327 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  29. Tamaki H., Hanada S., Kamagata Y., Nakamura K., Nomura N., Nakano K., Matsumura M. 2003; Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526 [CrossRef]
    [Google Scholar]
  30. Van Trappen S., Mergaert J., Swings J. 2003; Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245 [CrossRef]
    [Google Scholar]
  31. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J. 2004; Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov., and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92 [CrossRef]
    [Google Scholar]
  32. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J. 2005; Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772 [CrossRef]
    [Google Scholar]
  33. Wang Z.-W., Liu Y.-H., Dai X., Wang B.-J., Jiang C.-Y., Liu S.-J. 2006; Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56:439–442 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Yi H., Chun J. 2006; Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 56:1239–1244 [CrossRef]
    [Google Scholar]
  36. Yi H., Oh H.-M., Lee J.-H., Kim S.-J., Chun J. 2005; Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:637–641 [CrossRef]
    [Google Scholar]
  37. Yoon J.-H., Kang S.-J., Oh T.-K. 2006; Flavobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:997–1000 [CrossRef]
    [Google Scholar]
  38. Zhu F., Wang S., Zhou P. 2003; Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53:853–857 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64556-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64556-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed