sp. nov. and sp. nov. Free

Abstract

Two bacterial strains, M-5 and WP0211, were isolated from the surface water of a waste-oil pool in a coastal dock and from a deep-sea sediment sample from the West Pacific Ocean, respectively. Analysis of 16S rRNA gene sequences indicated that both strains belonged to the class and were closely related to (96.1 and 96.2 %, gene sequence similarity, respectively). Based on the results of physiological and biochemical tests, as well as DNA–DNA hybridization experiments, it is suggested that these isolates represent two novel species of the genus . Various traits allow both novel strains to be differentiated from , including oxygen requirement, nitrate reduction and denitrification abilities and major fatty acid profiles, as well as their ability to utilize six different carbon sources. Furthermore, the novel strains may be readily distinguished from each other by differences in their motility, flagellation, growth at 4 °C and 40 °C, their ability to hydrolyse Tween 40 and Tween 80, their utilization of 19 different carbon sources and by quantitative differences in their fatty acid contents. It is proposed that the isolates represent two novel species for which the names sp. nov. (type strain, M-5=DSM 17429=CGMCC 1.3998) and sp. nov. (type strain, WP0211=DSM 17430=CGMCC 1.3997) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64544-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/316.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64544-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1995 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology , 3rd edn. New York: Wiley;
    [Google Scholar]
  2. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  3. Felsenstein J., Churchill G. A. 1996; A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104 [CrossRef]
    [Google Scholar]
  4. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  5. Goodfellow M., Manco G. P., Chun J. 1997; Towards a practical species concept for cultivable bacteria. In Species: the Units of Biodiversity pp  25–59 Edited by Claridge M. F., Dawah H. A. London: Chapman & Hall;
    [Google Scholar]
  6. Imhoff J. F. 1986 Biologie halophiler anoxygener phototropher Eubakterien. Untersuchungen zur Okologie, Taxonomie und Physiologie Universität Bonn: Habilitationsschrift (in German;
    [Google Scholar]
  7. Imhoff J. F., Bias-Imhoff U. 1995; Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In Anoxygenic Photosynthetic Bacteria pp  179–205 Edited by Blankenship R. E., Madigan M. T., Bauer C. E. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  8. Imhoff J. F., Petri R., Suling J. 1998; Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α - Proteobacteria : description of the new genera Phaeospirillum gen.nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov.as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb.nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. . Int J Syst Bacteriol 48:793–798 [CrossRef]
    [Google Scholar]
  9. Ivanova E. P., Kiprianova E. A., Mikhailov V. V., Levanova G. F., Garagulya A. D., Gorshkova N. M., Vysotskii M. V., Nicolau D. V., Yumoto N. other authors 1998; Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–256 [CrossRef]
    [Google Scholar]
  10. Kobayashi T., Imada C., Hiraishi A., Tsujibo H., Miyamoto K., Inamori Y., Hamada N., Watanabe E. 2003; Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol 53:1807–1811 [CrossRef]
    [Google Scholar]
  11. Liu C., Shao Z. 2005a; Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186 [CrossRef]
    [Google Scholar]
  12. Liu C., Shao Z. 2005b; Isolation and characterization of oil-degrading marine microorganisms. Acta Oceanologica Sinica 27:114–120
    [Google Scholar]
  13. López-López A., Pujalte M. J., Benlloch S., Mata-Roig M., Rosselló-Mora R., Garay E., Rodríguez-Valera F. 2002; Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α -Proteobacteria. Int J Syst Evol Microbiol 52:1277–1283 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306 [CrossRef]
    [Google Scholar]
  15. Rossello-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64544-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64544-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed