Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of sp. nov. Free

Abstract

Several strains of sulfate-reducing bacteria were isolated from marine sediments recovered near Tunis, Korbous and Bizerte, Tunisia. They all showed characteristics consistent with members of the genus . One of these strains, designated MB3, was characterized further. Cells of strain MB3 were slender, curved, vibrio-shaped, motile, Gram-negative, non-spore-forming rods. They were positive for desulfoviridin as bisulfite reductase. Strain MB3 grew at temperatures of 15–45 °C (optimum 40 °C) and at pH 6.0–8.1 (optimum pH 7.0). NaCl was required for growth (optimum 20 g NaCl l). Strain MB3 utilized H in the presence of acetate with sulfate as electron acceptor. It also utilized lactate, ethanol, pyruvate, malate, fumarate, succinate, butanol and propanol as electron donors. Lactate was oxidized incompletely to acetate. Strain MB3 fermented pyruvate and fumarate (poorly). Electron acceptors utilized included sulfate, sulfite, thiosulfate, elemental sulfur and fumarate, but not nitrate or nitrite. The G+C content of the genomic DNA was 51 mol%. On the basis of genotypic, phenotypic and phylogenetic characteristics, strain MB3 (=DSM 18034=NCIMB 14199) is proposed as the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64530-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2909.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64530-0&mimeType=html&fmt=ahah

References

  1. Alazard D., Dukan S., Urios A., Verhé F., Bouabida N., Morel F., Thomas P., Garcia J.-L., Ollivier B. 2003; Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178 [CrossRef]
    [Google Scholar]
  2. Badziong W., Thauer R. K., Zeikus J. G. 1978; Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49 [CrossRef]
    [Google Scholar]
  3. Baena S., Fardeau M.-L., Labat M., Ollivier B., Garcia J.-L., Patel B. K. C. 1998; Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21:498–504 [CrossRef]
    [Google Scholar]
  4. Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J. 1997; Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521 [CrossRef]
    [Google Scholar]
  5. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  6. Boyle A. W., Phelps C. D., Young L. Y. 1999; Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65:1133–1140
    [Google Scholar]
  7. Campbell L., Kasprzycki M. A., Postgate J. R. 1966; Desulfovibrio africanus sp. nov., a new dissimilatory sulfate-reducing bacterium. J Bacteriol 92:1122–1127
    [Google Scholar]
  8. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  9. Esnault G., Caumette P., Garcia J.-L. 1988; Characterization of Desulfovibrio giganteus sp. nov., a sulfate reducing bacterium isolated from a brackish coastal lagoon. Syst Appl Microbiol 10:147–151 [CrossRef]
    [Google Scholar]
  10. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332 [CrossRef]
    [Google Scholar]
  11. Feio M. J., Zinkevich V., Beech I. B., Llobet-Brossa E., Eaton P., Schmitt J., Guezennec J. 2004; Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 54:1747–1752 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  13. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Hansen L. S., Blackburn T. H. 1995; Amino acid degradation by sulfate-reduction bacteria: evaluation of four methods. Limnol Oceanogr 40:502–510 [CrossRef]
    [Google Scholar]
  15. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  16. Jørgensen B. B. 1982; Mineralization of organic matter in the sea-bed – the role of sulfate reduction. Nature 269:643–645
    [Google Scholar]
  17. Jørgensen B. B., Bak F. 1991; Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark. Appl Environ Microbiol 57:847–856
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  211–232 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Le Gall J. 1963; A new species of Desulfovibrio . J Bacteriol 86:1120
    [Google Scholar]
  20. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Reichenbecher W., Schink B. 1997; Desulfovibrio inopinatus , sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 168:338–344 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Tsu I. I., Huang C., Garcia J.-L., Patel B. K. C., Cayol J. L., Baresi L., Mah R. A. 1998; Isolation and characterization of Desulfovibrio senezii sp. nov., a halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of Desulfovibrio fructosovorans as a new species. Arch Microbiol 170:313–317 [CrossRef]
    [Google Scholar]
  25. van der Maarel M. J. E. C., van Bergeijk S., van Werkhoven A. F., Laverman A. M., Meijer W. G., Stam W. T., Hansen T. A. 1996; Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch Microbiol 166:109–115 [CrossRef]
    [Google Scholar]
  26. Widdel F., Hansen T. 1992; The dissimilatory sulfate- and sulfur-reducing bacteria. In The Prokaryotes , 2nd edn. vol I pp  583–624 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  27. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64530-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64530-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed