1887

Abstract

Three strains (Mok-106, Mok-142 and Mok-143) were isolated from marine sediment samples collected from the coast of Okinawa Island, Japan. On the basis of 16S rRNA gene sequence comparisons, the isolates were affiliated with the family ; and were the closest relatives, having sequence similarities of 93.7 and 93.0 %, respectively. The novel isolates shared high levels of 16S rRNA gene sequence similarity with each other (98.7–99.3 %) and the results of DNA–DNA hybridization indicated that the three strains belong to the same species. The cells were rod-shaped, motile by means of single polar flagellum and formed colonies that produced a rose-coloured pigment within 6 days incubation at 25 °C. The isolates grew in the presence of 0.5–4.0 % (w/v) NaCl and at 15–40 °C. The major fatty acids were iso-13 : 0, iso-15 : 0, 16 : 0, 18 : 17 and summed feature 3 (16 : 17 and/or iso-15 : 0 2-OH). Menaquinone-6, menaquinone-7 and ubiquinone-8 were the major quinones and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 50–51 mol%. Phylogenetic and phenotypic analyses of these isolates suggested that they belong to a novel genus and species of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is Mok-106 (=NBRC 101628=CIP 109284).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64529-0
2007-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1493.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64529-0&mimeType=html&fmt=ahah

References

  1. Adachi J., Hasegawa M. 1996 molphy version 2.3 – Programs for Molecular Phylogenetics Based on Maximum-Likelihood (Computer Science Monograph no. 28) Tokyo: Institute of Statistical Mathematics;
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1993 Manual for the Identification of Medical Bacteria , 3rd edn. London: Cambridge University Press;
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rDNA on ‘hydrolink’ gels. J Microbiol Methods 19:145–154 [CrossRef]
    [Google Scholar]
  7. Ivanova E. P., Flavier S., Christen R. 2004; Phylogenetic relationships among marine Alteromonas -like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam.nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritillaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov., and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788 [CrossRef]
    [Google Scholar]
  8. Katsuta A., Adachi K., Matsuda S., Shizuri Y., Kasai K. 2005; Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55:1851–1855 [CrossRef]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  10. Minamisawa K. 1990; Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. Plant Cell Physiol 31:81–89
    [Google Scholar]
  11. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  12. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  13. Nakagawa T., Iino T., Suzuki K., Harayama S. 2006; Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay. Int J Syst Evol Microbiol 56:2639–2645 [CrossRef]
    [Google Scholar]
  14. Rosselló-Mora R. A., Ludwig W., Kämpfer P., Amann R., Schleifer K.-H. 1995; Ferrimonas balearica gen. nov., spec. nov., a new marine facultative Fe(III)-reducing bacterium. Syst Appl Microbiol 18:196–202 [CrossRef]
    [Google Scholar]
  15. Rüger H.-J., Krambeck H.-J. 1994; Evaluation of the biolog substrate metabolism system for classification of marine bacteria. Syst Appl Microbiol 17:281–288 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov., with Tenacibaculum maritimum comb.nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  18. Swofford D. L. 2000 paup*: Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Murray R. G. E., Stackebrandt E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  21. Widdel F., Kohring G.-W., Myer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64529-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64529-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error