1887

Abstract

A novel thermophilic, moderately halophilic, rod-shaped bacterium, strain MET-B, with a sheath-like outer structure (toga) was isolated from an offshore oil-producing well in Congo, West Africa. Strain MET-B was a Gram-negative bacterium with the ability to reduce elemental sulfur, but not sulfate, thiosulfate or sulfite into sulfide. The optimum growth conditions were 60 °C, pH 6.7–7.2 and 4–6 % NaCl. The DNA G+C content was 34.6 mol%. Strain MET-B was phylogenetically related to members of the genus ; , and were the closest relatives, with type strains exhibiting more than 99 % identity in an analysis of small-subunit rRNA gene sequences. The values for DNA–DNA relatedness between the type strains of these three species and strain MET-B were less than 42 %. As MET-B was found to be genetically and physiologically different from other species of the genus , this strain is proposed as representing a novel species, for which the name sp. nov. is proposed. The type strain is MET-B (=DSM 16923=CCUG 50214).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64516-0
2007-01-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/40.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64516-0&mimeType=html&fmt=ahah

References

  1. Balch, W. E., Fox, G. E., Magrum, R. J. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  2. Benson, D., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  3. Connan, J., Lacrampe-Couloume, G. & Magot, M. ( 1996; ). Origin of gases in reservoirs. In Proceedings of the 1995 Gas Research Conference, vol. 1, pp. 21–61. Edited by D. A. Dolenc. Rockville, MD: Government Institutes.
  4. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  5. Davey, M. E., Wood, W. A., Key, R., Nakamura, K. & Stahl, D. A. ( 1993; ). Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16, 191–200.[CrossRef]
    [Google Scholar]
  6. Fardeau, M.-L., Ollivier, B., Patel, B. K. C., Magot, M., Thomas, P., Rimbault, A., Rocchiccioli, F. & Garcia, J.-L. ( 1997; ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47, 1013–1019.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  9. Hungate, R. E. ( 1969; ). A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–232. Edited by H. N. Munro. New York: Academic Press.
  11. L'Haridon, S., Miroshnichenko, M. L., Hippe, H., Fardeau, M. L., Bonch-Osmolovskaya, E. A., Stackebrandt, E. & Jeanthon, C. ( 2002; ). Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52, 1715–1722.[CrossRef]
    [Google Scholar]
  12. Lien, T., Madsen, M., Rainey, F. A. & Birkeland, N. K. ( 1998; ). Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48, 1007–1013.[CrossRef]
    [Google Scholar]
  13. Magot, M., Ollivier, B. & Patel, B. K. C. ( 2000; ). Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77, 103–116.[CrossRef]
    [Google Scholar]
  14. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M. ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Miranda-Tello, E., Fardeau, M.-L., Thomas, P., Ramirez, F., Casalot, L., Cayol, J.-L., Garcia, J.-L. & Ollivier, B. ( 2004; ). Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54, 169–174.[CrossRef]
    [Google Scholar]
  17. Ollivier, B. & Cayol, J.-L. ( 2005; ). The fermentative, iron-reducing, and nitrate-reducing microorganisms. In Petroleum Microbiology, pp. 71–88. Edited by B. Ollivier & M. Magot. Washington, DC: American Society for Microbiology.
  18. Saito, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Stetter, K. O., Huber, R., Blöchl, E., Kurr, M., Eden, R. D., Fielder, M., Cash, H. & Vance, I. ( 1993; ). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.[CrossRef]
    [Google Scholar]
  20. Thabet, O. B., Fardeau, M.-L., Joulian, C., Thomas, P., Hamdi, M., Garcia, J.-L. & Ollivier, B. ( 2004; ). Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10, 185–190.[CrossRef]
    [Google Scholar]
  21. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  22. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64516-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64516-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error