1887

Abstract

is a maternally inherited, intracellular bacterium found in more than 20 % of all insects, as well as numerous other arthropods and filarial nematodes. It has been the subject of a growing number of studies in recent decades, because of the remarkable effects it has on its arthropod hosts, its potential as a tool for biological control of arthropods of agricultural and medical importance and its use as a target for treatment of filariasis. was originally discovered in cells of the mosquito and is the only formally described member of the genus. Molecular sequence-based studies have revealed a number of phylogenetically diverse strains of . Owing to uncertainty about whether comprises more than one species, researchers in the field now commonly refer to simply as . In this note, we briefly review higher-level phylogenetic and recombination studies of and propose that all the intracellular symbionts known to cluster closely with the type strain of , including those in the currently recognized supergroups (A–H), are officially given this name.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64515-0
2007-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/654.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64515-0&mimeType=html&fmt=ahah

References

  1. Baldo, L., Lo, N. & Werren, J. H. ( 2005; ). Mosaic nature of the Wolbachia surface protein. J Bacteriol 187, 5406–5418.[CrossRef]
    [Google Scholar]
  2. Baldo, L., Bordenstein, S., Wernegreen, J. J. & Werren, J. H. ( 2006a; ). Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23, 437–449.
    [Google Scholar]
  3. Baldo, L., Dunning Hotopp, J. C., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R. R., Hayashi, C., Maiden, M. C., Tettelin, H. & Werren, J. H. ( 2006b; ). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72, 7098–7110.[CrossRef]
    [Google Scholar]
  4. Bandi, C., Anderson, T. J. C., Genchi, C. & Blaxter, M. ( 1998; ). Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265, 2407–2413.[CrossRef]
    [Google Scholar]
  5. Bandi, C., Trees, A. J. & Brattig, N. W. ( 2001; ). Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98, 215–238.[CrossRef]
    [Google Scholar]
  6. Bordenstein, S. & Rosengaus, R. B. ( 2005; ). Discovery of a novel Wolbachia supergroup in isoptera. Curr Microbiol 51, 393–398.[CrossRef]
    [Google Scholar]
  7. Bordenstein, S. R. & Wernegreen, J. J. ( 2004; ). Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21, 1981–1991.[CrossRef]
    [Google Scholar]
  8. Campbell, B. C., Bragg, T. S. & Turner, C. E. ( 1992; ). Phylogeny of symbiotic bacteria of four weevil species (Coleoptera: Curculionidae) based on analysis of 16S ribosomal DNA. Insect Biochem Mol Biol 22, 415–421.[CrossRef]
    [Google Scholar]
  9. Casiraghi, M., Bordenstein, S. R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J. J., Werren, J. H. & Bandi, C. ( 2005; ). Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151, 4015–4022.[CrossRef]
    [Google Scholar]
  10. Czarnetzki, A. B. & Tebbe, C. C. ( 2004; ). Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6, 35–44.
    [Google Scholar]
  11. Dumler, J. S., Barbet, A. F., Bekker, C. P., Dasch, G. A., Palmer, G. H., Ray, S. C., Rikihisa, Y. & Rurangirwa, F. R. ( 2001; ). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51, 2145–2165.[CrossRef]
    [Google Scholar]
  12. Gorham, C. H., Fang, Q. Q. & Durden, L. A. ( 2003; ). Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 89, 283–289.[CrossRef]
    [Google Scholar]
  13. Hertig, M. ( 1936; ). The rickettsia Wolbachia pipientis (gen. et. sp. n) and associated inclusions of the mosquito, Culex pipiens. Parasitology 28, 453–486.[CrossRef]
    [Google Scholar]
  14. Hertig, M. & Wolbach, S. ( 1924; ). Studies on rickettsia-like microorganisms in insects. J Med Res 44, 329–374.
    [Google Scholar]
  15. Jeyaprakash, A. & Hoy, M. A. ( 2000; ). Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76 % of sixty-three arthropod species. Insect Mol Biol 9, 393–405.[CrossRef]
    [Google Scholar]
  16. Jiggins, F. M., von der Schulenburg, J. H., Hurst, G. D. & Majerus, M. E. ( 2001; ). Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci 268, 1423–1427.[CrossRef]
    [Google Scholar]
  17. Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C. & Bandi, C. ( 2002; ). How many Wolbachia supergroups exist? Mol Biol Evol 19, 341–346.[CrossRef]
    [Google Scholar]
  18. Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K. & other authors ( 1998; ). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95, 3140–3145.[CrossRef]
    [Google Scholar]
  19. Masui, S., Kamoda, S., Sasaki, T. & Ishikawa, H. ( 2000; ). Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51, 491–497.
    [Google Scholar]
  20. Moran, N. A., Munson, M. A., Baumann, P. & Ishikawa, H. ( 1993; ). A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc Biol Sci 253, 167–171.[CrossRef]
    [Google Scholar]
  21. Munson, M. A., Baumann, P. & Kinsey, M. G. ( 1991; ). Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte associated primary endosymbionts of aphids. Int J Syst Bacteriol 41, 566–568.[CrossRef]
    [Google Scholar]
  22. O'Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L. & Robertson, H. M. ( 1992; ). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89, 2699–2702.[CrossRef]
    [Google Scholar]
  23. Paraskevopoulos, C., Bordenstein, S., Wernergreen, J. J., Werren, J. & Bourtzis, K. ( 2006; ). Towards a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 53, 388–395.[CrossRef]
    [Google Scholar]
  24. Plantard, O., Rasplus, J. Y., Mondor, G., Le Clainche, I. & Solignac, M. ( 1999; ). Distribution and phylogeny of Wolbachia inducing thelytoky in Rhoditini and ‘Aylacini’ (Hymenoptera: Cynipidae). Insect Mol Biol 8, 185–191.[CrossRef]
    [Google Scholar]
  25. Rasgon, J. L. & Scott, T. W. ( 2004; ). Phylogenetic characterization of Wolbachia symbionts infecting Cimex lectularius L. and Oeciacus vicarius Horvath (Hemiptera: Cimicidae). J Med Entomol 41, 1175–1178.[CrossRef]
    [Google Scholar]
  26. Rousset, F., Vautrin, D. & Solignac, M. ( 1992; ). Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc Biol Sci 247, 163–168.[CrossRef]
    [Google Scholar]
  27. Rowley, S. M., Raven, R. J. & McGraw, E. A. ( 2004; ). Wolbachia pipientis in Australian spiders. Curr Microbiol 49, 208–214.
    [Google Scholar]
  28. Shimodaira, H. & Hasegawa, M. ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  29. Sironi, M., Bandi, C., Sacchi, L., Di Sacco, B., Damiani, G. & Genchi, C. ( 1995; ). Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74, 223–227.[CrossRef]
    [Google Scholar]
  30. Stouthamer, R., Breeuwert, J. A., Luck, R. F. & Werren, J. H. ( 1993; ). Molecular identification of microorganisms associated with parthenogenesis. Nature 361, 66–68.[CrossRef]
    [Google Scholar]
  31. Stouthamer, R., Breeuwer, J. A. & Hurst, G. D. ( 1999; ). Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53, 71–102.[CrossRef]
    [Google Scholar]
  32. Taylor, M. J. & Hoerauf, A. ( 1999; ). Wolbachia bacteria of filarial nematodes. Parasitol Today 15, 437–442.[CrossRef]
    [Google Scholar]
  33. Vandekerckhove, T. T., Watteyne, S., Willems, A., Swings, J. G., Mertens, J. & Gillis, M. ( 1999; ). Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol Lett 180, 279–286.[CrossRef]
    [Google Scholar]
  34. Wenseleers, T., Ito, F., Van Borm, S., Huybrechts, R., Volckaert, F. & Billen, J. ( 1998; ). Widespread occurrence of the micro-organism Wolbachia in ants. Proc Biol Sci 265, 1447–1452.[CrossRef]
    [Google Scholar]
  35. Werren, J. H. ( 1997; ). Biology of Wolbachia. Annu Rev Entomol 42, 587–609.[CrossRef]
    [Google Scholar]
  36. Werren, J. H. & Windsor, D. M. ( 2000; ). Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci 267, 1277–1285.[CrossRef]
    [Google Scholar]
  37. Werren, J. H. & Bartos, J. D. ( 2001; ). Recombination in Wolbachia. Curr Biol 11, 431–435.[CrossRef]
    [Google Scholar]
  38. Werren, J. H., Zhang, W. & Guo, L. R. ( 1995; ). Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 261, 55–63.[CrossRef]
    [Google Scholar]
  39. Wu, M., Sun, L. V., Vamathevan, J., Riegler, M., Deboy, R., Brownlie, J. C., McGraw, E. A., Martin, W., Esser, C. & other authors ( 2004; ). Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2, E69.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64515-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64515-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error