1887

Abstract

A Gram-negative, non-spore-forming bacterial strain with the ability to solubilize highly insoluble phosphatic minerals was isolated from a high-phosphorous iron ore from Minas Gerais State, Brazil. This strain, designated FeGl01, was subjected to a polyphasic taxonomic investigation. Comparative 16S rRNA gene sequence analysis indicated that it formed a distinct phylogenetic lineage within the genus together with several other species of the genus, e.g. , and . Partial nucleotide sequencing and analysis of the gene roughly corroborated the phylogenetic position of strain FeGl01 within the genus . The chemotaxonomic properties of strain FeGl01, such as ubiquinone Q-8 as the predominant quinone system and C, C cyclo, C 7 and C 8 cyclo as the major fatty acids, were also consistent with its classification within the genus . DNA–DNA hybridization experiments between strain FeGl01 and the type strains of , and yielded reassociation values of 40 % or lower, which, together with qualitative and quantitative differences in fatty acid composition and with differences in several phenotypic traits, support the separation of the new isolate from the phylogenetically most closely related species. Therefore, it is suggested that strain FeGl01 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FeGl01 (=LMG 23612=CECT 7171=DSM 18251).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64498-0
2006-10-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2421.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64498-0&mimeType=html&fmt=ahah

References

  1. Artursson, V., Finlay, R. D. & Jansson, J. K. ( 2006; ). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8, 1–10.[CrossRef]
    [Google Scholar]
  2. Brämer, C. O., Vandamme, P., da Silva, L. F., Gomez, J. G. C. & Steinbüchel, A. ( 2001; ). Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51, 1709–1713.[CrossRef]
    [Google Scholar]
  3. Caballero-Mellado, J., Martínez-Aguilar, L., Paredes-Valdez, G. & Estrada-de los Santos, P. ( 2004; ). Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54, 1165–1172.[CrossRef]
    [Google Scholar]
  4. Chen, W.-M., James, E. K., Coenye, T. & 7 other authors ( 2006; ). Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56, 1847–1851.[CrossRef]
    [Google Scholar]
  5. Cheng, C. Y., Misra, V. N., Clough, J. & Mun, R. ( 1999; ). Dephosphorisation of Western Australian iron ore by hydrometallurgical process. Miner Eng 12, 1083–1092.[CrossRef]
    [Google Scholar]
  6. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  7. Coenye, T. & Vandamme, P. ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef]
    [Google Scholar]
  8. Coenye, T., Mahenthiralingam, E., Henry, D., LiPuma, J. J., Laevens, S., Gillis, M., Speert, D. P. & Vandamme, P. ( 2001; ). Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51, 1481–1490.
    [Google Scholar]
  9. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  10. Igual, J. M., Valverde, A., Cervantes, E. & Velázquez, E. ( 2001; ). Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21, 561–568.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K., Jakobsen, I.-B. & Nei, M. ( 2001; ). Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, AZ, USA.
  13. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  14. Nautiyal, C. S. ( 1999; ). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170, 265–270.[CrossRef]
    [Google Scholar]
  15. O'Sullivan, L. A. & Mahenthiralingam, E. ( 2005; ). Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41, 8–11.[CrossRef]
    [Google Scholar]
  16. Payne, G. W., Vandamme, P., Morgan, S. H., LiPuma, J. J., Coenye, T., Weightman, A. J., Jones, T. H. & Mahenthiralingam, E. ( 2005; ). Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71, 3917–3927.[CrossRef]
    [Google Scholar]
  17. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  18. Peix, A., Mateos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E. & Velázquez, E. ( 2001; ). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33, 1927–1935.[CrossRef]
    [Google Scholar]
  19. Perin, L., Martínez-Aguilar, L., Paredes-Valdez, G., Baldani, J. I., Estrada-de los Santos, P., Reis, V. M. & Caballero-Mellado, J. ( 2006; ). Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56, 1931–1937.[CrossRef]
    [Google Scholar]
  20. Purnomo, E., Mursyid, A., Syarwani, M., Jumberi, A., Hashidoko, Y., Hasegawa, T., Honma, S. & Osaki, M. ( 2005; ). Phosphorus solubilizing microorganisms in the rhizosphere of local rice varieties grown without fertilizer on acid sulfate soils. Soil Sci Plant Nutr 51, 679–681.[CrossRef]
    [Google Scholar]
  21. Reis, V. M., Estrada-de los Santos, P., Tenorio-Salgado, S. & 10 other authors ( 2004; ). Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54, 2155–2162.[CrossRef]
    [Google Scholar]
  22. Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. & Martínez-Molina, E. ( 2001; ). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.[CrossRef]
    [Google Scholar]
  23. Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N., Subba-Rao, N. S., Mateos, P. F., Gillis, M., Dazzo, F. B. & Martínez-Molina, E. ( 2002; ). A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68, 5217–5222.[CrossRef]
    [Google Scholar]
  24. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  26. Vandamme, P., Holmes, B., Vancanneyt, M. & 8 other authors ( 1997; ). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47, 1188–1200.[CrossRef]
    [Google Scholar]
  27. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  28. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  29. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. & Arakawa, M. ( 1992; ). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36, 1251–1275.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64498-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64498-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2421 - 2425

Neighbour-joining tree based on nearly complete 16S rRNA gene sequences of sp. nov. FeGl01 and other species. [PDF](17 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error