1887

Abstract

A Gram-negative, motile, rod-shaped, psychrophilic bacterium, LT17, was isolated from deep-sea sediments (3300 m depth) of the East Sea (Sea of Japan). Optimal growth of LT17 requires the presence of 2.5 % (w/v) NaCl, a pH of 7.0–7.5 and a temperature of 17 °C. The isolate grows optimally under a hydrostatic pressure of 10 MPa and growth is possible between 0.1 and <30 MPa. The novel strain is positive in tests for catalase, oxidase, lipase, -glucosidase and gelatinase activities and reduces nitrate to nitrate. The predominant cellular fatty acids are iso-C13 : 0, iso-C15 : 0, C16 : 0, C16 : 17 and C20 : 53. The DNA G+C content of strain LT17 is 38.8 mol%. Phylogenetic analysis of 16S rRNA gene sequences places this bacterium in the class , within the genus . The closest relatives of strain LT17 are (97.8 % gene sequence similarity), (97.5 %), (96.8 %), (96.5 %) and (95.4 %). The DNA–DNA hybridization levels between the novel isolate and its closest known phylogenetic relatives, and , are lower than 14 %. On the basis of this polyphasic evidence, strain LT17 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LT17 (=KCTC 10635BP=JCM 12524).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64469-0
2007-02-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/208.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64469-0&mimeType=html&fmt=ahah

References

  1. Bae S. S., Lee J.-H., Kim S.-J. 2005; Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. Int J Syst Evol Microbiol 55:1211–1215 [CrossRef]
    [Google Scholar]
  2. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205
    [Google Scholar]
  3. Brink A. J., van Straten A., van Rensburg A. J. 1995; Shewanella ( Pseudomonas ) putrefaciens bacteremia. Clin Infect Dis 20:1327–1332 [CrossRef]
    [Google Scholar]
  4. DeLong E. F., Franks D. G., Yayanos A. A. 1997; Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, WA, USA:
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  10. Ivanova E. P., Gorshkova N. M., Bowman J. P., Lysenko A. M., Zhukova N. V., Sergeev A. F., Mikhailov V. V., Nicolau D. V. 2004; Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087 [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–32 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kato C., Nogi Y. 2001; Correlation between phylogenetic structure and function: examples from deep-sea Shewanella . FEMS Microbiol Ecol 35:223–230 [CrossRef]
    [Google Scholar]
  13. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  14. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321 [CrossRef]
    [Google Scholar]
  15. Nealson K. H., Myers C. R., Wimpee B. B. 1991; Isolation and identification of manganese reducing bacteria and estimates of microbial manganese Mn(IV)-reducing potential in the Black Sea. Deep Sea Res A 38: Supplement 2S907–S920 [CrossRef]
    [Google Scholar]
  16. Nichols D. S., Nichols P. D., Russell N. J., Davies N. W., McMeekin T. A. 1997; Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim Biophys Acta 1347:164–176 [CrossRef]
    [Google Scholar]
  17. Nogi Y., Kato C., Horikoshi K. 1998; Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338 [CrossRef]
    [Google Scholar]
  18. Nozue H., Hayashi T., Hashimoto Y., Ezaki T., Hamasaki K., Ohwada K., Terawaki Y. et al. 1992; Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al. 1990, 335. Int J Syst Bacteriol 42:628–634 [CrossRef]
    [Google Scholar]
  19. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria - a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Semple K. M., Westlake D. W. S. 1987; Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 35:925–931
    [Google Scholar]
  22. Seo H. J., Bae S. S., Lee J.-H., Kim S.-J. 2005a; Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666 [CrossRef]
    [Google Scholar]
  23. Seo H. J., Bae S. S., Yang S. H., Lee J.-H., Kim S.-J. 2005b; Photobacterium aplysiae sp. nov., a lipolytic marine bacterium isolated from eggs of the sea hare Aplysia kurodai . Int J Syst Evol Microbiol 55:2293–2296 [CrossRef]
    [Google Scholar]
  24. Skerratt J. H., Bowman J. P., Nichols P. D. 2002; Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106 [CrossRef]
    [Google Scholar]
  25. Venkateswaran K., Moser D. P., Dollhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M. other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64469-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64469-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error