1887

Abstract

The phylogenetic structure of the clade was evaluated by comparison of 16S rRNA gene, , , and sequence analysis. Phylogenies obtained with the different genes were in overall good agreement and a well-supported, almost fully resolved phylogenetic tree was obtained when the combined data were analysed in a Bayesian approach. A rapid basal diversification of the three genera is suggested. Evolutionary rates of the 16S rRNA gene in these genera seem to be different and specifically related to the evolution of this group, revealing the importance of this sequence in the constitution of the present taxonomy, but preventing its straightforward use in phylogenetic inference.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64468-0
2007-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/276.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64468-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Drancourt M. 2004; Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65 , sodA , recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105 [CrossRef]
    [Google Scholar]
  2. Alfaro M. E., Zoller S., Lutzoni F. 2003; Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266 [CrossRef]
    [Google Scholar]
  3. Antunes A., Rainey F. A., Nobre M. F., Schumann P., Ferreira A. M., Ramos A., Santos H., da Costa M. S. 2002; Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 52:647–655
    [Google Scholar]
  4. Brandley M. C., Schmitz A., Reeder T. W. 2005; Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54:373–390 [CrossRef]
    [Google Scholar]
  5. Bull J. J., Huelsenbeck J. P., Cunningham C. W., Swofford D. L., Waddell P. J. 1993; Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397 [CrossRef]
    [Google Scholar]
  6. Castoe T. A., Doan T. M., Parkinson C. L. 2004; Data partitions and complex models in Bayesian analysis: the phylogeny of gymnophtalmid lizards. Syst Biol 53:448–469 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Rodrigues U., Aguirre M., Farrow J., Martinez-Murcia A., Phillips B., Williams A., Wallbanks S. 1991; Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12 [CrossRef]
    [Google Scholar]
  8. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S. 1993; Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603 [CrossRef]
    [Google Scholar]
  9. Dicks L. M. T., Dellaglio F. E., Collins M. D. 1995; Proposal to reclassify Leuconostoc oenos as Oenococcus oeni gen. nov., comb. nov.. Int J Syst Bacteriol 45:395–397 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1978; Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 2002 phylip (phylogenetic inference package), version 3.6a. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  12. Garvie E. I. 1976; Hybridization between the deoxyribonucleic acids of some strains of heterofermentative lactic acid bacteria. Int J Syst Bacteriol 26:116–122 [CrossRef]
    [Google Scholar]
  13. Garvie E. I. 1981; Sub-divisions within the genus Leuconostoc as shown by RNA/DNA hybridization. J Gen Microbiol 127:209–212
    [Google Scholar]
  14. Goldman N., Anderson J. P., Rodrigo A. G. 2000; Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670 [CrossRef]
    [Google Scholar]
  15. Hall B. G. 2004 Phylogenetic Trees Made Easy: a How-To Manual for Molecular Biologists , 2nd edn. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  16. Huelsenbeck J. P. 1995; The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol Biol Evol 12:843–849
    [Google Scholar]
  17. Huelsenbeck J. P., Hillis D. M. 1993; Success of phylogenetic methods in the four-taxon case. Syst Biol 42:247–264 [CrossRef]
    [Google Scholar]
  18. Huelsenbeck J. P., Ronquist F. R. 2001; MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  19. Kandler O., Weiss N. 1986; Regular, nonsporing gram-positive rods. In Bergey's Manual of Systematic Bacteriology vol 2 pp  1208–1234 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Konstantinidis K. T., Tiedje J. M. 2005; Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264 [CrossRef]
    [Google Scholar]
  21. Lanave C., Preparata G., Saccone C., Serio G. 1984; A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93 [CrossRef]
    [Google Scholar]
  22. Marchuk D., Drumm M., Saulino A., Collins F. 1991; Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19:1154 [CrossRef]
    [Google Scholar]
  23. Martinez-Murcia A. J., Collins M. D. 1990; A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 70:73–84 [CrossRef]
    [Google Scholar]
  24. Martinez-Murcia A. J., Harland N. M., Collins M. D. 1993; Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of small- and large-subunit rRNA derived trees. J Appl Bacteriol 74:532–541
    [Google Scholar]
  25. Mills D. A., Rawsthorne H., Parker C., Tamir D., Makarova K. 2005; Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475
    [Google Scholar]
  26. Morse R., Collins M. D., O'Hanlon K., Wallbanks S., Richardson P. T. 1996; Analysis of the beta subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos ) is a tachytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46:1004–1009 [CrossRef]
    [Google Scholar]
  27. Morse R., O'Hanlon K., Collins M. D. 2002; Phylogenetic, amino acid content and indel analyses of the β subunit of DNA-dependent RNA polymerase of Gram-positive and Gram-negative bacteria. Int J Syst Evol Microbiol 52:1477–1484 [CrossRef]
    [Google Scholar]
  28. Philippe H., Zhou Y., Brinkmann H., Rodrigue N., Delsuc F. 2005; Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50 [CrossRef]
    [Google Scholar]
  29. Pitcher D. G., Sanders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  30. Posada D., Crandall K. A. 1998; Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  31. Shimodaira H., Hasegawa M. 1999; Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  33. Swofford D. L. 2003 paup*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  34. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  37. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB , rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [CrossRef]
    [Google Scholar]
  38. Yang Z. 1996; Maximum-likelihood models for combined analyses of multiple sequence data. J Mol Evol 42:587–596 [CrossRef]
    [Google Scholar]
  39. Yang D., Woese C. R. 1989; Phylogenetic structure of the “leuconostocs”: an interesting case of a rapidly evolving organism. Syst Appl Microbiol 12:145–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64468-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64468-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error