1887

Abstract

The taxonomic position of six strains isolated from swine waste-corn fermentations was reinvestigated. All strains were included in a multilocus sequence analysis (MLSA) study for species identification of using the genes encoding the phenylalanyl-tRNA synthase alpha subunit () and RNA polymerase alpha subunit (). Partial and gene sequences showed that strains LMG 11400 and NRRL B-4435 represent a separate lineage that is distantly related to the type strain of , LMG 6900, and to three other strains of the species. The MLSA data showed that the two strains LMG 11400 and NRRL B-4435 constituted a distinct cluster, sharing 100 % and gene sequence similarity. The other reference strains clustered together with the type strain of , LMG 6900, and were clearly differentiated from strains LMG 11400 and NRRL B-4435 (80 and 89 % and gene sequence similarity, respectively). The 16S rRNA gene sequences of the latter two strains are 100 % identical, with the nearest phylogenetic neighbour LMG 6900 showing only 97.2 % 16S rRNA gene sequence similarity. Further polyphasic taxonomic study based on whole-cell protein fingerprinting, DNA–DNA hybridization and biochemical features demonstrated that the two strains represent a single, novel species, for which the name sp. nov. is proposed. The type strain is LMG 11400 (=NRRL B-4436=DSM 20534).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64463-0
2006-11-01
2021-03-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2523.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64463-0&mimeType=html&fmt=ahah

References

  1. Boot H. J., Kolen C. P. A. M., Pot B., Kersters K., Pouwels P. H. 1996; The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus . Microbiology 142:2375–2384 [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  3. Gevers D., Huys G., Swings J. 2001; Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36 [CrossRef]
    [Google Scholar]
  4. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  5. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  6. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  7. Nakamura L. K. 1982; Deoxyribonucleic acid homologies of Lactobacillus amylophilus and other homofermentative species. Int J Syst Bacteriol 32:43–47 [CrossRef]
    [Google Scholar]
  8. Nakamura L. K., Crowell C. D. 1979; Lactobacillus amylophilus , a new starch-hydrolyzing species from swine waste-corn fermentation. Dev Ind Microbiol 20:532–540
    [Google Scholar]
  9. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005a; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [CrossRef]
    [Google Scholar]
  10. Naser S. M., Vancanneyt M., De Graef E. 8 other authors 2005b; Enterococcus canintestini sp. nov., from faecal samples of healthy dogs. Int J Syst Evol Microbiol 55:2177–2182 [CrossRef]
    [Google Scholar]
  11. Naser S. M., Hagen K. E., Vancanneyt M., Cleenwerck I., Swings J., Tompkins T. A. 2006; Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int J Syst Evol Microbiol 56:355–360 [CrossRef]
    [Google Scholar]
  12. Niemann S., Puehler A., Tichy H. V., Simon R., Selbitschka W. 1997; Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82:477–484 [CrossRef]
    [Google Scholar]
  13. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics pp  493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  14. Sleytr U. B., Sara M. 1997; Bacterial and archaeal S-layer proteins: structure–function relationships and their biotechnological applications. Trends Biotechnol 15:20–26 [CrossRef]
    [Google Scholar]
  15. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  16. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  17. Švec P., Vancanneyt M., Koort J., Naser S. M., Hoste B., Vihavainen E., Vandamme P., Swings J., Björkroth J. 2005; Enterococcus devriesei sp. nov., associated with animal sources. Int J Syst Evol Microbiol 55:2479–2484 [CrossRef]
    [Google Scholar]
  18. Vancanneyt M., Mengaud J., Cleenwerck I. 7 other authors 2004; Reclassification of Lactobacillus kefirgranum Takizawa et al . 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov., and emended description of L. kefiranofaciens Fujisawa et al . 1988. Int J Syst Evol Microbiol 54:551–556 [CrossRef]
    [Google Scholar]
  19. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  20. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64463-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64463-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error