1887

Abstract

A phenanthrene- and citronellol-degrading bacterium, strain RLD-1, was isolated from the fly ash dumping site of a thermal power plant in Delhi, India. The 16S rRNA gene sequence indicated that this strain belongs to the genus ; high levels of sequence similarity were found with respect to DSM 50332 (98.9 %), DSM 16612 (97.6 %) and DSM 14399 (97.5 %). Phylogenetic analysis based on 16S rRNA gene sequences placed the strain within the clade represented by these three strains. Strain RLD-1 showed low levels of DNA–DNA hybridization with respect to DSM 50332 (36 %), DSM 16612 (4 %) and (13.7 %). Strain RLD-1 can also be distinguished from these three strains on the basis of several biochemical and physiological attributes. The novel strain contained high levels of cellular fatty acids 18 : 17, 16 : 0 and 16 : 17, along with 10 : 0 3-OH and 12 : 0 3-OH. Thus, strain RLD-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RLD-1 (=MTCC 7601=CCM 7361).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64456-0
2007-03-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/527.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64456-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Arden Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula . J Gen Microbiol 115:343–354 [CrossRef]
    [Google Scholar]
  3. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  4. Collins C. H., Lyne P. M., Grange J. M. 1989 Collins and Lyne's Microbiological Methods , 6th edn. Oxford: Butterworth;
    [Google Scholar]
  5. Farmer J. J. III 1999; Enterobacteriaceae : introduction and identification. In Manual of Clinical Microbiology , 7th edn. pp  442–458 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  7. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca , Nocardia autotrophica , and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  8. Jukes T., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  9. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477 [CrossRef]
    [Google Scholar]
  10. Kiyohara H., Nagao K., Kouno K., Yano K. 1982; Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461
    [Google Scholar]
  11. Kwon S. W., Kim J. S., Park I. C., Yoon S. H., Park D. H., Lim C. K., Go S. J. 2003; Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. . Int J Syst Evol Microbiol 53:21–27 [CrossRef]
    [Google Scholar]
  12. McCarthy A. J., Cross T. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25
    [Google Scholar]
  13. Migula W. 1894; über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238 (in German)
    [Google Scholar]
  14. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  15. Pal R., Bala S., Dadhwal M., Kumar M., Dhingra G., Prakash O., Prabagaran S. R., Shivaji S., Cullum J. other authors 2005; Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55:1965–1972 [CrossRef]
    [Google Scholar]
  16. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894, 237AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Samanta S. K., Chakraborti A. K., Jain R. K. 1999; Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107 [CrossRef]
    [Google Scholar]
  19. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Sneath P. H. A., Stevens M., Sackin M. J. 1981; Numerical taxonomy of Pseudomonas based on published record of substrate utilization. Antonie van Leeuwenhoek 47:423–448 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19:333–355
    [Google Scholar]
  24. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64456-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64456-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error