1887

Abstract

An actinomycete strain, NAR01, was isolated from root nodules of a plant. The 16S rRNA gene sequence of strain NAR01 showed most similarity to the type strains of (98.94 %) and (98.4 %). The chemotaxonomic results obtained confirmed the taxonomic position of the isolate within the genus , and revealed differences at the species level. Physiological and biochemical tests showed that strain NAR01 could be clearly distinguished from its closest phylogenetic neighbours, while DNA–DNA hybridization results indicated that the isolate represents a novel species. On the basis of these results, strain NAR01 (=DSM 44875=LMG 23557) is proposed as the type strain of the novel species sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64449-0
2006-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2381.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64449-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  2. Coombs J. T., Franco C. M. M. 2003; Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608 [CrossRef]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  4. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–663 [CrossRef]
    [Google Scholar]
  5. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  8. Hirsch P., Mevs U., Kroppenstedt R. M., Schumann P., Stackebrandt E. 2004; Cryptoendolithic actinomycetes from antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174 [CrossRef]
    [Google Scholar]
  9. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  10. Jones K. L. 1949; Fresh isolates of actinomycetes in which the presence of sporogeneous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–146
    [Google Scholar]
  11. Kawamoto I. 1989; Genus Micromonospora Ørskov 1923, 147AL . In Bergey's Manual of Systematic Bacteriology vol 4 pp  2442–2450 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. Kroppenstedt R. M., Mayilraj S., Wink J. M., Kallow W., Schumann P., Secondini C., Stackebrandt E. 2005; Eight new species of the genus Micromonospora , Micromonospora citrea sp.nov., Micromonospora echinaurantiaca sp. nov., Micromonospora echinofusca sp. nov.,Micromonospora fulviviridis sp. nov., Micromonospora inyonensis sp. nov., Micromonospora peucetia sp. nov., Micromonospora sagamiensis sp. nov., and Micromonospora viridifaciens sp. nov. Syst Appl Microbiol 28:328–339 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Lechevalier M. P., De Bièvre C., Lechevalier H. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  15. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. 1984; An integrated procedure for extracting bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  17. Ørskov J. 1923 Investigation into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard;
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α , ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  19. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003; Xylanimonas cellulosilytica gen. nov., sp. nov. a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra . Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Schröder K.-H., Naumann I., Kroppenstedt R. M., Reischl U. 1997; Mycobacterium hassiacum sp. nov., a new rapidly growing thermophilic mycobacterium. Int J Syst Bacteriol 47:86–91 [CrossRef]
    [Google Scholar]
  22. Staneck J. L., Roberts G. D. 1974; Simplified approach to the identification of aerobic actinomycetes by thin layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  23. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Suzuki K., Kudo T. 2005a; Micromonospora eburnea sp. nov., isolated from a Thai peat swamp forest. Int J Syst Evol Microbiol 55:417–422 [CrossRef]
    [Google Scholar]
  24. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Kudo T. 2005b; Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. J Gen Appl Microbiol 51:229–234 [CrossRef]
    [Google Scholar]
  25. Trujillo M. E., Fernández-Molinero C., Velázquez E., Kroppenstedt R. M., Schumann P., Mateos P. F., Martínez-Molina E. 2005; Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 55:877–880 [CrossRef]
    [Google Scholar]
  26. Trujillo M. E., Kroppenstedt R. M., Schumann P., Martínez-Molina E. 2006; Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius . Int J Syst Evol Microbiol 56:407–411 [CrossRef]
    [Google Scholar]
  27. Valdés M., Pérez N.-O., Estrada-de los Santos P., Caballero-Mellado J., Peña-Cabriales J. J., Normand P., Hirsch A. M. 2005; Non- Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466 [CrossRef]
    [Google Scholar]
  28. Vincent J. M. 1970; The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of Root Nodule Bacteria pp  1–13 Edited by Vincent J. M. Oxford: Blackwell Scientific;
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64449-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64449-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error