1887

Abstract

A Gram-negative, strictly aerobic, non-spore-forming, rod-shaped, red–pink bacterium, designated strain PB17, was isolated from grass soil in the Republic of Korea and its taxonomic position was investigated by means of a polyphasic approach. Phylogenetic analysis of 16S rRNA gene sequences showed that strain PB17 belonged to the genus . Sequence similarities between strain PB17 and the type strains of species with validly published names ranged from 90.1 to 91.8 %. The predominant cellular fatty acids in strain PB17 were iso-C, summed feature 4 (iso-C 2-OH and/or C 7), C 5 and anteiso-C. The DNA G+C content was 58.8 mol%. The results of phylogenetic, chemotaxonomic and phenotypic characterization indicated that strain PB17 can be distinguished from all known species and represents a novel species, for which the name sp. nov. is proposed. The type strain is PB17 (=KCTC 12607 =LMG 24240).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64447-0
2008-04-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/941.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64447-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors)(1987).Current Protocols in Molecular Biology. New York: Wiley.
  2. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L.(2005). GenBank. Nucleic Acids Res 33, D34–D38.[CrossRef] [Google Scholar]
  3. Buck, J. D.(1982). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993. [Google Scholar]
  4. Buczolits, S., Denner, E. B. M., Vybiral, D., Wieser, M., Kämpfer, P. & Busse, H.-J.(2002). Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52, 445–456. [Google Scholar]
  5. Buczolits, S., Denner, E. B. M., Kämpfer, P. & Busse, H.-J.(2006). Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56, 2071–2078.[CrossRef] [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M. & Tiedje, J. M.(2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33, D294–D296. [Google Scholar]
  7. Collins, M. D., Hutson, R. A., Grant, I. R. & Patterson, M. F.(2000). Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50, 731–734.[CrossRef] [Google Scholar]
  8. Fautz, E. & Reichenbach, H.(1980). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  10. Garrity, G. M. & Holt, J. G.(2001). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  11. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  12. Hiraishi, A., Ueda, Y., Ishihara, J. & Mori, T.(1996). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42, 457–469.[CrossRef] [Google Scholar]
  13. Hirsch, P., Ludwig, W., Hethke, C., Sittig, M., Hoffmann, B. & Gallikowski, C. A.(1998).Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21, 374–383.[CrossRef] [Google Scholar]
  14. Kim, M.-K., Im, W.-T., Ohta, H., Lee, M. & Lee, S.-T.(2005).Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43, 152–157. [Google Scholar]
  15. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  16. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  17. Mesbah, M. & Whitman, W. B.(1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef] [Google Scholar]
  18. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  19. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  20. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  21. Tschech, A. & Pfennig, N.(1984). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137, 163–167.[CrossRef] [Google Scholar]
  22. Widdel, F. & Bak, F.(1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  23. Widdel, F., Kohring, G. W. & Mayer, F.(1983). Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286–294.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64447-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64447-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error