1887

Abstract

A bacterial strain capable of degrading some monochlorinated dibenzofurans, designated RW16, was isolated from aerobic River Elbe sediments. The strain was characterized based on 16S rRNA gene sequence analysis, DNA G+C content, physiological characteristics, polyamines, ubiquinone and polar lipid pattern and fatty acid composition. This analysis revealed that strain RW16 represents a novel species of the genus . The DNA G+C content of strain RW16, 60.7 mol%, is the lowest yet reported for the genus. 16S rRNA gene sequence analysis placed strain RW16 as an outlier in the genus . The name sp. nov. is proposed for this dibenzofuran-mineralizing organism, with type strain RW16 (=DSM 12677=CIP 109198).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64433-0
2007-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/306.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64433-0&mimeType=html&fmt=ahah

References

  1. Abraham, W.-R., Meyer, H., Lindholst, S., Vancanneyt, M. & Smit, J. ( 1997; ). Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. Syst Appl Microbiol 20, 522–539.[CrossRef]
    [Google Scholar]
  2. Abraham, W.-R., Strömpl, C., Meyer, H., Lindholst, S., Moore, E. R. B., Christ, R., Vancanneyt, M., Tindall, B. J., Bennasar, A. & other authors ( 1999; ). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 49, 1053–1073.[CrossRef]
    [Google Scholar]
  3. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef]
    [Google Scholar]
  4. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  5. Balkwill, D. L., Drake, G. R., Reeves, R. H., Fredrickson, J. K., White, D. C., Ringelberg, D. B., Chandler, D. P., Romine, M. F., Kennedy, D. W. & Spadoni, C. M. ( 1997; ). Taxonomic study of aromatics-degrading bacteria from the deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47, 191–201.[CrossRef]
    [Google Scholar]
  6. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine patterns as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  7. Busse, H.-J., Bunka, S., Hensel, A. & Lubitz, W. ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef]
    [Google Scholar]
  8. Busse, H.-J., Kämpfer, P. & Denner, E. B. M. ( 1999; ). Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef]
    [Google Scholar]
  9. Busse, H.-J., Hauser, E. & Kämpfer, P. ( 2005; ). Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55, 2565–2569.[CrossRef]
    [Google Scholar]
  10. Dagher, F., Deziel, E., Lirette, P., Paquette, G., Bisaillon, J. G. & Villemur, R. ( 1997; ). Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol 43, 368–377.[CrossRef]
    [Google Scholar]
  11. Fredrickson, H. L., Cappenberg, T. E. & De Leeuw, J. ( 1986; ). Polar lipid fatty acid composition of Lake Vechten seston – an ecological application of lipid analysis. FEMS Microbiol Ecol 38, 381–396.[CrossRef]
    [Google Scholar]
  12. Fredrickson, J. K., Balkwill, D. L., Drake, G. R., Romine, M. F., Ringelberg, M. F. & White, D. C. ( 1995; ). Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61, 1917–1922.
    [Google Scholar]
  13. Fujii, K., Urano, N., Ushio, H., Satomi, M. & Kimura, S. ( 2001; ). Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51, 603–610.
    [Google Scholar]
  14. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 664–666. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  15. Junca, H. & Pieper, D. H. ( 2004; ). Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 6, 95–110.
    [Google Scholar]
  16. Ka, J. O., Holben, W. E. & Tiedje, J. M. ( 1994; ). Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl Environ Microbiol 60, 1106–1115.
    [Google Scholar]
  17. Kämpfer, P., Steiof, M. & Dott, W. ( 1991; ). Microbiological characterization of a fuel oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef]
    [Google Scholar]
  18. Kämpfer, P., Bark, K., Busse, H.-J., Auling, G. & Dott, W. ( 1992; ). Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate: AMP phosphotransferase (PPAT) activity. Syst Appl Microbiol 15, 409–419.[CrossRef]
    [Google Scholar]
  19. Kämpfer, P., Denner, E. B. M., Meyer, S., Moore, E. R. B. & Busse, H.-J. ( 1997; ). Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47, 577–583.[CrossRef]
    [Google Scholar]
  20. Kanz, C., Aldebert, P., Althorpe, N., Baker, W., Baldwin, A., Bates, K., Browne, P., van den Broek, A., Castro, M. & other authors ( 2005; ). The EMBL nucleotide sequence database. Nucleic Acids Res 33, D29–D33.
    [Google Scholar]
  21. Kim, S.-J., Chun, J., Bae, K. S. & Kim, Y.-C. ( 2000; ). Polyphasic assignment of an aromatic degrading Pseudomonas sp. strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50, 1641–1647.[CrossRef]
    [Google Scholar]
  22. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  23. Lloyd-Jones, G. & Lau, P. C. ( 1997; ). Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Appl Environ Microbiol 63, 3286–3290.
    [Google Scholar]
  24. Maruyama, T., Park, H. D., Ozawa, K., Tanaka, Y., Sumino, T., Hamana, K., Hiraishi, A. & Kato, K. ( 2006; ). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56, 85–89.[CrossRef]
    [Google Scholar]
  25. Pal, R., Bala, S., Dadhwal, M., Kumar, M., Dhingra, G., Prakash, O., Prabagaran, S. R., Shivaji, S., Cullum, J. & other authors ( 2005; ). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972.[CrossRef]
    [Google Scholar]
  26. Pal, R., Bhasin, V. K. & Lal, R. ( 2006; ). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophaga comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56, 667–670.[CrossRef]
    [Google Scholar]
  27. Smith-Grenier, L. L. & Adkins, A. ( 1996; ). Isolation and characterization of soil microorganisms capable of utilizing the herbicide diclofop-methyl as a sole source of carbon and energy. Can J Microbiol 42, 221–226.[CrossRef]
    [Google Scholar]
  28. Stolz, A., Schmidt-Maag, C., Denner, E. B. M., Busse, H.-J., Egli, T. & Kämpfer, P. ( 2000; ). Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50, 35–41.[CrossRef]
    [Google Scholar]
  29. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  30. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  31. Tindall, B. J. ( 1990; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  32. Ushiba, Y., Takahara, Y. & Ohta, H. ( 2003; ). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53, 2045–2048.[CrossRef]
    [Google Scholar]
  33. Wilson, K. ( 1994; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 241–245. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley & Sons Inc.
  34. Wittich, R.-M., Strömpl, C., Moore, E. R. B., Blasco, R. & Timmis, K. N. ( 1999; ). Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans. J Ind Microbiol Biotechnol 23, 353–358.[CrossRef]
    [Google Scholar]
  35. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34, 99–119.[CrossRef]
    [Google Scholar]
  36. Yabuuchi, E., Yamamoto, H., Terakubo, S., Okamura, N., Naka, T., Fujiwara, N., Kobayashi, K., Kosako, Y. & Hiraishi, A. ( 2001; ). Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51, 281–292.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64433-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64433-0
Loading

Data & Media loading...

Supplements

Phylogenetic relationships calculated between strain RW16 , , species and the type species of , , and using UPGMA with the Kimura-2 parameter model, based on 16S rRNA gene sequences. [PDF](15 KB)

PDF

[PDF file of Supplementary Tables S1 and S2](19 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error