1887

Abstract

A strictly anaerobic, halophilic, motile, endospore-forming, rod-shaped bacterium, designated strain HY-45-18, was isolated from a sediment sample of a tidal flat in Korea. The isolate produced butyric acid, propionic acid, glycerol and H as fermentation end products from glucose. Strain HY-45-18 is halophilic as it was unable to grow in the absence of sea salts. A 16S rRNA gene sequence analysis clearly indicated that the tidal flat isolate is a member of cluster I of the order , which contains the type species of , . The closest phylogenetic neighbour of strain HY-45-18 was KCTC 5146 (96.5 % 16S rRNA gene sequence similarity). Several phenotypic characteristics can be readily used to differentiate the isolate from phylogenetically related clostridia. Therefore, strain HY-45-18 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HY-45-18 (=IMSNU 40129=KCTC 5147=JCM 13194).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64428-0
2007-06-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1315.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64428-0&mimeType=html&fmt=ahah

References

  1. Choi, D. H., Kim, Y. G., Hwang, C. Y., Yi, H., Chun, J. & Cho, B. C. ( 2006; ). Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56, 635–640.[CrossRef]
    [Google Scholar]
  2. Chun, J. S. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  3. Chun, J., Bae, K. S., Moon, E. Y., Jung, S. O., Lee, H. K. & Kim, S. J. ( 2000; ). Nocardiopsis kunsanensis sp nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50, 1909–1913.
    [Google Scholar]
  4. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  7. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  8. Fitch, W. M. & Margoliash, E. ( 1967; ). Construction of phylogenetic trees. Science 155, 279–284.[CrossRef]
    [Google Scholar]
  9. Hernandez-Eugenio, G., Fardeau, M. L., Cayol, J. L. A., Patel, B. K. C., Thomas, P., Macarie, H., Garcia, J. L. & Ollivier, B. ( 2002; ). Clostridium thiosulfatireducens sp. nov., a proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52, 1461–1468.[CrossRef]
    [Google Scholar]
  10. Jeon, Y. S., Chung, H., Park, S., Hur, I., Lee, J. H. & Chun, J. ( 2005; ). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef]
    [Google Scholar]
  11. Johnson, M. J., Thatcher, E. & Cox, M. E. ( 1995; ). Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33, 755–758.
    [Google Scholar]
  12. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  13. Kim, B. S., Oh, H. M., Kang, H., Park, S. S. & Chun, J. ( 2004; ). Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14, 205–211.
    [Google Scholar]
  14. Kim, B. S., Oh, H. M., Kang, H. & Chun, J. ( 2005; ). Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol 43, 144–151.
    [Google Scholar]
  15. Kim, S., Jeong, H., Kim, S. & Chun, J. ( 2006; ). Clostridium ganghwense sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56, 691–693.[CrossRef]
    [Google Scholar]
  16. Mountfort, D. O., Rainey, F. A., Burghardt, J. & Stackebrandt, E. ( 1994; ). Clostridium grantii sp. nov., a new obligately anaerobic, alginolytic bacterium isolated from mullet gut. Arch Microbiol 162, 173–179.[CrossRef]
    [Google Scholar]
  17. Park, Y. D., Baik, K. S., Yi, H., Bae, K. S. & Chun, J. ( 2005; ). Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 55, 2519–2523.[CrossRef]
    [Google Scholar]
  18. Powers, E. M. ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758.
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Swofford, D. L. ( 1998; ). paup*: phylogenetic analysis using parsimony (* and other methods), version 4.0. Sunderland, MA: Sinauer Associates.
  21. Yi, H. & Chun, J. ( 2006; ). Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 44, 171–176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64428-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64428-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error