1887

Abstract

The taxonomic positions and phylogenetic relationships of two new methylotrophic isolates from Lake Washington (USA) sediment, FAM5 and 500, and the previously described methylotrophic strain EHg5 isolated from contaminated soil in Estarreja (Portugal) were investigated. All three strains were facultative methylotrophs capable of growth on a variety of C and multicarbon compounds. Optimal growth occurred at pH 7.5–8 and 30–37 °C. The major fatty acids were C 7 and C. The major quinone was ubiquinone Q8. Neither methanol dehydrogenase nor methanol oxidase activities were detectable in cells grown on methanol, suggesting an alternative, as-yet unknown, mechanism for methanol oxidation. The isolates assimilated C units at the level of formaldehyde, via the serine cycle. The DNA G+C content of the strains ranged between 64 and 65 mol%. 16S rRNA gene sequence similarity between the three new isolates was 99.85–100 %, but was below 94 % with other members of the , indicating that the isolates represent a novel taxon. Based on physiological, phenotypic and genomic characteristics of the three isolates, a new genus, gen. nov., is proposed within the family . The type strain of gen. nov., sp. nov. is FAM5 (=CCUG 52030=JCM 13912).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64422-0
2006-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2517.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64422-0&mimeType=html&fmt=ahah

References

  1. Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J. & Coates, J. D. ( 2001; ). Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51, 527–533.
    [Google Scholar]
  2. Bergmeyer, H. U., Gawehn, K. & Grassl, M. ( 1974; ). Enzymes as biochemical reagents. Glucose oxidase. In Methods of Enzymatic Analysis, 2nd edn, vol. I, pp. 457–458. Edited by H. U. Bergmeyer. New York: Academic Press.
  3. Bond, P. L., Hugenholtz, P., Keller, J. & Blackall, L. L. ( 1995; ). Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61, 1910–1916.
    [Google Scholar]
  4. Coates, J. D., Michaelidou, U., Bruce, R. A., O'Connor, S. M., Crespi, J. N. & Achenbach, L. A. ( 1999; ). Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65, 5234–5241.
    [Google Scholar]
  5. Cole, A. C., Semmens, M. J. & LaPara, T. M. ( 2004; ). Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Appl Environ Microbiol 70, 1982–1989.[CrossRef]
    [Google Scholar]
  6. Connon, S. A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S. J. & Semprini, L. ( 2005; ). Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7, 165–178.[CrossRef]
    [Google Scholar]
  7. De Marco, P., Pacheco, C. C., Figueiredo, A. R. & Moradas-Ferreira, P. ( 2004; ). Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234, 75–80.[CrossRef]
    [Google Scholar]
  8. Doronina, N. V., Ivanova, E. G. & Trotsenko, Y. A. ( 2005; ). Phylogenetic position and emended description of the genus Methylovorus. Int J Syst Evol Microbiol 55, 903–906.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 2003; ). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.
  10. Gomila, M., Gasco, J., Busquets, A., Gil, J., Bernabeu, R., Buades, J. M. & Lalucat, J. ( 2005; ). Identification of culturable bacteria present in haemodialysis water and fluid. FEMS Microbiol Ecol 52, 101–114.[CrossRef]
    [Google Scholar]
  11. Harder, W., Attwood, M. & Quayele, J. R. ( 1973; ). Methanol assimilation by Hyphomicrobium spp. J Gen Microbiol 78, 155–163.[CrossRef]
    [Google Scholar]
  12. Higgins, D. G., Thompson, J. D. & Gibson, T. J. ( 1996; ). Using clustal for multiple sequence alignments. Methods Enzymol 266, 383–402.
    [Google Scholar]
  13. Jenkins, O. & Doroty, J. ( 1987; ). Taxonomic studies on some gram-negative methylotrophic bacteria. J Gen Microbiol 133, 453–473.
    [Google Scholar]
  14. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  15. Juretschko, S., Loy, A., Lehner, A. & Wagner, M. ( 2002; ). The microbial community composition of a nitrifying–denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25, 84–99.[CrossRef]
    [Google Scholar]
  16. Kalyuzhnaya, M. G. & Chistoserdova, L. ( 2005; ). Community-level analysis: genes encoding methanopterin-dependent enzymes. Methods Enzymol 397, 443–454.
    [Google Scholar]
  17. Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. ( 2004; ). Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington. Microb Ecol 48, 463–472.[CrossRef]
    [Google Scholar]
  18. Kalyuzhnaya, M. G., Stolyar, S. M., Auman, A. J., Lara, J. C., Lidstrom, M. E. & Chistoserdova, L. ( 2005a; ). Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55, 2345–2350.[CrossRef]
    [Google Scholar]
  19. Kalyuzhnaya, M. G., Bowerman, S., Nercessian, O., Lidstrom, M. E. & Chistoserdova, L. ( 2005b; ). Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol 71, 8846–8854.[CrossRef]
    [Google Scholar]
  20. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  21. Lidstrom, M. E. ( 2001; ). Aerobic methylotrophic prokaryotes. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, release 3.7. Edited by M. Dworkin and others. New York: Springer. http://link.springer-ny.com/link/service/books/10125/
  22. Loy, A., Schulz, C., Lücker, S., Schöpfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A. & Wagner, M. ( 2005; ). 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl Environ Microbiol 71, 1373–1386.[CrossRef]
    [Google Scholar]
  23. McDonald, I. R. & Murrell, J. C. ( 1997; ). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63, 3218–3224.
    [Google Scholar]
  24. Miller, J. A., Kalyuzhnaya, M. G., Noyes, E., Lara, J. C., Lidstrom, M. E. & Chistoserdova, L. ( 2005; ). Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. Int J Syst Evol Microbiol 55, 1247–1253.[CrossRef]
    [Google Scholar]
  25. Nakatsu, C. H., Hristova, K., Hanada, S., Meng, X.-Y., Hanson, J. R., Scow, K. M. & Kamagata, Y. ( 2006; ). Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56, 983–989.[CrossRef]
    [Google Scholar]
  26. Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. ( 2005; ). Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71, 6885–6689.[CrossRef]
    [Google Scholar]
  27. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 611–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  28. Song, B., Palleroni, N. J. & Häggblom, M. M. ( 2000; ). Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66, 3446–3453.[CrossRef]
    [Google Scholar]
  29. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  30. Tarlera, S. & Denner, E. B. M. ( 2003; ). Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int J Syst Evol Microbiol 53, 1085–1091.[CrossRef]
    [Google Scholar]
  31. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. & De Ley, J. ( 1992; ). Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 42, 107–119.[CrossRef]
    [Google Scholar]
  32. Williams, M. M., Domingo, J. W., Meckes, M. C., Kelty, C. A. & Rochon, H. S. ( 2004; ). Phylogenetic diversity of drinking water bacteria in a distribution system simulator. J Appl Microbiol 96, 954–964.[CrossRef]
    [Google Scholar]
  33. Xie, C. & Yokota, A. ( 2004; ). Phylogenetic analyses of the nitrogen-fixing genus Derxia. J Gen Appl Microbiol 50, 129–135.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64422-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64422-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error