sp. nov., isolated from a compost sample Free

Abstract

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and HS production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04 fell within the radiation of the cluster comprising species and clustered with ATCC 33299 (96.7 % sequence similarity); the similarity to sequences of other species within the family was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C, iso-C 3-OH and summed feature 4 (iso-C 2-OH and/or C 7). These chemotaxonomic data supported the affiliation of strain TR6-04 to the genus . However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04 (=KCTC 12579=LMG 23402=CCUG 52468) should be classified as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64406-0
2006-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2031.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64406-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Euzéby J. P. 1998; Taxonomic note: necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 Revision). Int J Syst Bacteriol 48:1073–1075 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Fitch W. M. 1972; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416
    [Google Scholar]
  6. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  7. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  8. Holmes B., Owen R. J., Weaver R. E. 1981; Flavobacterium multivorum , a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. Int J Syst Bacteriol 31:21–34 [CrossRef]
    [Google Scholar]
  9. Holmes B., Owen R. J., Hollis D. G. 1982; Flavobacterium spiritivorum , a new species isolated from human clinical specimens. Int J Syst Bacteriol 32:157–165 [CrossRef]
    [Google Scholar]
  10. Holmes B., Weaver R. E., Steigerwalt A. G., Brenner D. J. 1988; A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae : proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int J Syst Bacteriol 38:348–353 [CrossRef]
    [Google Scholar]
  11. Keswani J., Whitman W. B. 2001; Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678
    [Google Scholar]
  12. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  13. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  14. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Moore D. D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.2 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Shivaji S., Ray M. K., Rao N. S., Saisree L., Jagannadham M. V., Kumar G. S., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  23. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium , and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [CrossRef]
    [Google Scholar]
  24. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  29. Widdel F., Kohring G., Mayer F. 1983; Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  30. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb.nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov. glucose-nonfermenting gram-negative rods in CDC groups IIk-2 and IIb. Int J Syst Bacteriol 33:580–598 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64406-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64406-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed