1887

Abstract

A Gram-positive, facultatively anaerobic, motile, spore-forming bacterium, designated Gsoil 1411, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil 1411 belongs to the family , with closest sequence similarity to the type strains of (95.7 %), (95.2 %) and (94.8 %). Strain Gsoil 1411 showed less than 94 % sequence similarity to the type strains of other recognized members of the genus . In addition, the presence of MK-7 as the major menaquinone, anteiso-C as a major fatty acid (44.8 %) and the presence of PAEN513F and PAEN862F signature sequences suggest that it is affiliated to the genus . The G+C content of the genomic DNA was 53.9 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil 1411 is suggested to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is Gsoil 1411 (=KCTC 13020=LMG 23405).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64405-0
2006-11-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2677.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64405-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual , 6th edn. San Francisco: Pearson Education, Inc. and Benjamin Cummings;
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  10. Im W.-T., Jung H.-M., Cui Y.-S., Liu Q.-M., Zhang S.-L., Lee S.-T. 2005; Cultivation of the three hundreds of bacterial species from the soil of the ginseng field and mining the novel lineage bacteria. In Proceedings of the International Meeting of the Federation of Korean Microbiological Societies , abstract A035p– 169 Seoul: Federation of Korean Microbiological Societies;
    [Google Scholar]
  11. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp  2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  17. Rivas R., Mateos P. F., Martınez-Molina E., Velazquez E. 2005; Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55:405–408 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Sasser M. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997a; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus. Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  21. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997b; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov., and Paenibacillus chibensis . Int J Syst Bacteriol 47:299–306 [CrossRef]
    [Google Scholar]
  22. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  25. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  26. Widdel F., Kohring G., Mayer F. 1983; Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov.. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64405-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64405-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error