1887

Abstract

Four yellow-pigmented, Gram-negative, motile strains were isolated from the glassy rind of submarine basaltic lava from the Jan Mayen area of the Norwegian/Greenland Sea at a depth of 1300 m below sea level. The four strains had identical 16S rRNA gene sequences and were indistinguishable in all phenotypic and chemotypic tests performed, indicating that they belonged to the same species. The strains had an obligately aerobic chemo-organotrophic metabolism. The strains were capable of growth at temperatures between −2 and 34 °C, at pH between 6.5 and 8.6, and at sea salt concentrations between 3 and 60 g l. The strains were able to utilize organic acids, amino acids and sugars but not alcohols; they were also capable of hydrolysing a wide range of macromolecules. The predominant fatty acids were 15 : 0 iso, 15 : 1 iso, 15 : 0 iso 3-OH and 17 : 0 iso 3-OH. The mean DNA G+C content of the strains was 31.4 mol%. 16S rRNA gene sequence analysis indicated that the strains were affiliated to the genera and . However, phenotypic characteristics, especially aerobic metabolism, suggested that the strains should be placed within a new genus. On the basis of the polyphasic characterization of the four strains, it is suggested that the strains be included in the family as representatives of a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is H35 (=CIP 109091=DSM 18180).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64404-0
2006-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2455.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64404-0&mimeType=html&fmt=ahah

References

  1. Aasen A. J., Ljaaen J. S. 1966; Carotenoids of Flexibacteria IV. The carotenoids of two further pigment types. Acta Chem Scand 20:2322–2324 [CrossRef]
    [Google Scholar]
  2. Bernardet J. F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  3. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  4. Bowman J. P. 2005 The Marine Clade of the Flavobacteriaceae : the genera Aequorivita ,Arenibacter , Cellulophaga , Croceibacter , Formosa , Gelidibacter , Gillisiia , Maribacter , Mesonia , Muricauda , Polaribacter , Psychroflexus , Psychroserpens , Robiginitaleav Salgenetibacter , Tenacibaculum , Ulvibacter , Vitellibacter and Zobellia .In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community New York: Springer; http://link.springer-ny.com/link/service/books/10125/
  5. Bowman J. P., Nichols D. S. 2005 Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including S ubsaximicrobium wynnwilliamsii gen. nov., sp nov., Subsaximicrobium saxinquilinus sp.nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia , Gelidibacter and Gillisia . Int J Syst Evol Microbiol 55, 1471–1486 [CrossRef]
  6. Campanella J. J., Bitincka L., Smalley J. 2003; MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4 : [View Article]
    [Google Scholar]
  7. Collins C. H. 1995 Collins and Lynes Microbiological Methods , 7th edn. Oxford: Butterworth–Heinemann;
    [Google Scholar]
  8. Felsenstein J. 2004 phylip – Phylogeny Inference Package, version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  9. Garrity G. M., Bell J. A., Lilburn T. 2005; The revised road map to the manual. In Bergey's Manual of Systematic Bacteriology pp  159–187 Edited by Brenner D. J., Krieg N. R., Staley J. T. East Lansing, MI: Springer;
    [Google Scholar]
  10. Ivanova E. P., Alexeeva Y. V., Flavier S., Wright J. P., Zhukova N. V., Gorshkova N. M., Mikhailov V. V., Nicolau D. V., Christen R. 2004; Formosa algae gen. nov., sp nov., a novel member of the family Flavobacteriaceae . Int J Syst Evol Microbiol 54:705–711 [CrossRef]
    [Google Scholar]
  11. Jung S. Y., Kang S. J., Lee M. H., Lee S. Y., Oh T. K., Yoon J. H. 2005; Gaetbulibacter saemankumensis gen. nov., sp. nov. a novel member of the family Flavobacteriaceae isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 55:1845–1849 [CrossRef]
    [Google Scholar]
  12. Kirchman D. L. 2002; The ecology of Cytophaga Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  13. Lapidus I. R., Berg H. C. 1982; Gliding motility of Cytophaga sp. strain-U67. J Bacteriol 151:384–398
    [Google Scholar]
  14. Lewin R. A., Lounsbery D. M. 1969; Isolation, cultivation and characterization of flexibacteria. J Gen Microbiol 58:145–170 [CrossRef]
    [Google Scholar]
  15. Mandel M., Igambi L., Bergenda J., Dodson M. L., Scheltge E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338
    [Google Scholar]
  16. Marmur J. 1963; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Methods Enzymol 6:726–728
    [Google Scholar]
  17. Nedashkovskaya O. I., Kim S. B., Han S. K. 7 other authors 2004; Algibacter lectus gen. nov., sp nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 54:1257–1261 [CrossRef]
    [Google Scholar]
  18. Nedashkovskaya O. I., Kim S. B., Han S. K. 9 other authors 2005a; Winogradskyella thalassocola gen.nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov.,marine bacteria of the family Flavobacteriaceae . Int J Syst Evol Microbiol 55:49–55 [CrossRef]
    [Google Scholar]
  19. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Frolova G. M., Mikhailov V. V., Bae K. S. 2005b; Bizionia paragorgiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the soft coral Paragorgia arborea . Int J Syst Evol Microbiol 55:375–378 [CrossRef]
    [Google Scholar]
  20. Reichenbach H. 1989; Family I. Cytophagaceae STANIER 1940, 630,AL EMEND. In Bergey's Manual of Systematic Bacteriology vol  3 pp  2015–2050 Edited by Staley J. T. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Slifkin M. 2000; Tween 80 opacity test responses of various Candida species. J Clin Microbiol 38:4626–4628
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64404-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64404-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error