1887

Abstract

A Gram-positive, non-motile, endospore-forming bacterium, designated Gsoil 1517, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized in order to determine its taxonomic position, using a polyphasic approach. It was found to rod-shaped and aerobic or facultatively anaerobic. It grew optimally at 30 °C and at pH 6.5–7.0. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1517 forms a distinct phylogenetic lineage within the genus , being related to JCM 11201 (96.8 %). The strain showed less than 94.3 % sequence similarity with other species. The G+C content of the genomic DNA was found to be 47.8 mol% and the predominant respiratory quinone was MK-7. The major fatty acids were iso-C (42.4 %), anteiso-C (17.4 %), iso-C (9.7 %) and C (6.0 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1517 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Gsoil 1517 (=KCTC 13929=CCUG 52470=LMG 23408).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64403-0
2006-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2861.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64403-0&mimeType=html&fmt=ahah

References

  1. Ajithkumar V. P., Ajithkumar B., Mori K., Takamizawa K., Iriye R., Tabata S. 2001; A novel filamentous Bacillus sp., strain NAF001, forming endospores and budding cells. Microbiology 147:1415–1423
    [Google Scholar]
  2. Ajithkumar V. P., Ajithkumar B., Iriye R., Sakai T. 2002; Bacillus funiculus sp. nov., novel filamentous isolates from activated sludge. Int J Syst Evol Microbiol 52:1141–1144 [CrossRef]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  4. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  5. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  6. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  7. Euzéby J. P. 2006; List of Prokaryotic Names with Standing in Nomenclature . http://www.bacterio.cict.fr/index.html
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. Fortina M. G., Pukall R., Schumann P., Mora D., Parini C., Manachini P. L., Stackebrandt E. 2001; Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al . 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus : a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . Int J Syst Bacteriol 48:99–106 [CrossRef]
    [Google Scholar]
  13. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  14. Im W.-T., Jung H.-M., Cui Y.-S., Liu Q.-M., Zhang S.-L., Lee S.-T. 2005; Cultivation of the three hundreds of bacterial species from the soil of the ginseng field and mining the novel lineage bacteria. In Proceedings of the International Meeting of the Federation of Korean Microbiological Societies , abstract A035p– 169 Seoul: Federation of Korean Microbiological Societies;
    [Google Scholar]
  15. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  16. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in the α -4 subgroup of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  17. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  18. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  19. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Moore D. D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.2 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  22. Nakamura L. K. 1998; Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48:1031–1035 [CrossRef]
    [Google Scholar]
  23. Nazina T. N., Tourova T. P., Poltaraus A. B. 8 other authors 2001; Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus , Bacillus thermocatenulatus , Bacillus thermoleovorans , Bacillus kaustophilus , Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus , G. thermocatenulatus , G. thermoleovorans , G. kaustophilus , G.thermoglucosidasius and G. thermodenitrificans . Int J Syst Evol Microbiol 51433–446
    [Google Scholar]
  24. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882
    [Google Scholar]
  25. Roberts M. S., Nakamura L. K., Cohan F. M. 1994; Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264 [CrossRef]
    [Google Scholar]
  26. Ruiz-García C., Quesada E., Martínez-Checa F., Llamas I., Urdaci M. C., Béjar V. 2005; Bacillus axarquiensis sp. nov. and Bacillus malacitensis sp. nov., isolated from river-mouth sediments in southern Spain. Int J Syst Evol Microbiol 55:1279–1285 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  29. Shida O., Takagi H., Kadowaki K., Komagata K. 1996; Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  31. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  34. Venkateswaran K., Kempf M., Chen F., Satomi M., Nicholson W., Kern R. 2003; Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are γ -radiation resistant. Int J Syst Evol Microbiol 53:165–172 [CrossRef]
    [Google Scholar]
  35. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov. as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  36. Widdel F., Bak F. 1992; Gram-negative mesophilic sulphate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  37. Widdel F., Kohring G., Mayer F. 1983; Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov., sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  38. Wisotzkey J. D., Jurtshuk P. Jr, Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
  39. Yoon J.-H., Weiss N., Lee K.-C., Lee I.-S., Kang K. H., Park Y.-H. 2001; Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 2087–2093 [CrossRef]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64403-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64403-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error