sp. nov. and sp. nov., selenate-reducing bacteria belonging to the isolated from Tokyo Bay Free

Abstract

Two novel mesophilic, facultatively anaerobic, selenate-reducing bacteria, designated strains FUT3661 and Asr22-7, were isolated from a sediment sample and the alimentary tract of littleneck clams, respectively. Both sources of the samples were collected from the coast of Tokyo Bay, Japan. Cells were Gram-negative rods and motile by means of a polar flagellum. The strains reduced selenate to elemental selenium (Se) and also reduced iron(III) oxyhydroxide, iron(III) citrate, arsenate, manganese(IV) oxide, elemental sulfur and oxygen and used lactate, pyruvate, yeast extract, tryptone and Casamino acids as electron donors and carbon sources. The strains contained both menaquinone (MK-7) and ubiquinones (Q-7 and Q-8) as isoprenoid quinones. The major fatty acids were C and C 9. The G+C content of the genomic DNA was 58.1 mol% for strain FUT3661 and 57.2 mol% for strain Asr22-7. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains were related to members of the genus (<94.0 % similarities), although the two novel strains formed a separate lineage. 16S rRNA gene sequence similarity between strains FUT3661 and Asr22-7 was 96 %. On the basis of this polyphasic analysis, it was concluded that strains FUT3661 and Asr22-7 represent two novel species within the genus , for which the names sp. nov. (type strain FUT3661=NBRC 101558=DSM 18154) and sp. nov. (type strain Asr22-7=NBRC 101286=DSM 18153) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64399-0
2006-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2639.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64399-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäfer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  4. Conde J. E., Sanz Alaejos M. 1997; Selenium concentrations in natural and environmental waters. Chem Rev 97:1979–2003 [CrossRef]
    [Google Scholar]
  5. Delong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Takeuchi T., Yamamoto H., Liu S.-L., Matsui K., Yabuuchi E. 1988; Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26:1708–1713
    [Google Scholar]
  7. Fujita M., Ike M., Nishimoto S., Takahashi K., Kashiwa M. 1997; Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J Ferment Bioeng 83:517–522 [CrossRef]
    [Google Scholar]
  8. Hucker G. J., Conn H. J. 1923; Method of Gram Staining . New York State Agriculture Experiment Station Technical Bulletin no: 93 Ithaca, NY: New York State Agriculture Experiment Station;
    [Google Scholar]
  9. Katsuta A., Adachi K., Matsuda S., Shizuri Y., Kasai H. 2005; Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55:1851–1855 [CrossRef]
    [Google Scholar]
  10. Klonowska A., Heulin T., Vermeglio A. 2005; Selenite and tellurite reduction by Shewanella oneidensis . Appl Environ Microbiol 71:5607–5609 [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  12. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [CrossRef]
    [Google Scholar]
  13. Lovley D. R., Phillips E. J. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  16. Rosselló-Mora R. A., Ludwig W., Kämpfer P., Amann R., Schleifer K.-H. 1995; Ferrimonas balearica gen. nov., spec. nov., a marine facultative Fe(III)-reducing bacterium. Syst Appl Microbiol 18196–202 [CrossRef]
    [Google Scholar]
  17. Stolz J. F., Oremland R. S. 1999; Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627 [CrossRef]
    [Google Scholar]
  18. Stolz J. F., Ellis D. J., Switzer Blum J., Ahmann D., Lovley D. R., Oremland R. S. 1999; Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov. new members of the Sulfurospirillum clade of the epsilon Proteobacteria . Int J Syst Bacteriol 49:1177–1180 [CrossRef]
    [Google Scholar]
  19. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis , sp. nov. and Bacillus selenitireducens sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  20. Switzer Blum J., Stolz J. F., Oren A., Oremland R. S. 2001; Selenihalanaerobacter shriftii gen. nov., sp. nov. a halophilic anaerobe from deep sea sediments that respires selenate. Arch Microbiol 175:208–219 [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  22. Tamura H., Goto K., Yotsuyanagi T., Nagayama M. 1974; Spectrophotometric determination of iron (II) with 1,10-phenanthroline in the presence of large amounts of iron (III). Talanta 21:314–318 [CrossRef]
    [Google Scholar]
  23. von Wintzingerode F., Göbel U. B., Siddiqui R. A., Rösick U., Schumann P., Frühling A.., Rohde M., Pukall R., Stackebrandt E. 2001; Salana multivorans gen. nov., sp. nov., a novel actinobacterium isolated from an anaerobic bioreactor and capable of selenate reduction. Int J Syst Evol Microbiol 51:1653–1661 [CrossRef]
    [Google Scholar]
  24. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol 4 pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  25. Widdel F., Kohring G.-W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  26. Zhang Y., Siddique T., Wang J., Frankenberger W. T. Jr 2004; Selenate reduction in river water by Citrobacter freundii isolated from a selenium-contaminated sediment. J Agric Food Chem 52:1594–1600 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64399-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64399-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed