1887

Abstract

Two novel sulfate-reducing bacteria, strains ALDC and Lake, which were able to oxidize n-alkanes, were isolated from a naval oily wastewater-storage facility (VA, USA) and from oilfield production water (OK, USA), respectively. The type strain (ALDC) had a narrow substrate specificity and could grow only with n-alkanes (from C to C), pyruvate, butyrate, hexanoic acid and 4-methyloctanoic acid. Cells of strain ALDC stained Gram-negative and were slightly curved, short rods with oval ends (2.5–3.0×1.0–1.4 μm), often occurring in pairs. Cells tended to form aggregates or large clusters and were non-motile and did not form endospores. Optimum growth occurred between 31 and 37 °C and at pH 6.5–7.2. NaCl was not required for growth, but salt concentrations up to 55 g l could be tolerated. The DNA G+C content was 53.6 mol%. Phylogenetic analysis of the 16S rRNA genes revealed that strains ALDC and Lake were closely related, but not identical (99.9 % similarity). The two strains were not closely related to other known alkane-degrading, sulfate-reducing bacteria or to other genera of the . Therefore, it is proposed that strain ALDC (=JCM 13588=ATCC BAA-1302) represents the type strain of a novel species and genus, with the name gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64398-0
2006-12-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2737.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64398-0&mimeType=html&fmt=ahah

References

  1. Aeckersberg F., Bak F., Widdel F. 1991; Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14 [CrossRef]
    [Google Scholar]
  2. Aeckersberg F., Rainey F., Widdel F. 1998; Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  5. Caldwell M. E., Garrett R. M., Prince R. C., Suflita J. M. 1998; Anaerobic biodegradation of long-chain n -alkanes under sulfate-reducing conditions. Environ Sci Technol 32:2191–2195 [CrossRef]
    [Google Scholar]
  6. Cravo-Laureau C., Matheron R., Cayol J.-L., Joulian C., Hirschler-Réa A. 2004; Desulfatibacillum aliphaticivorans gen. nov., sp. nov. an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83 [CrossRef]
    [Google Scholar]
  7. Davidova I. A., Gieg L. M., Nanny M. A., Kropp K. G., Suflita J. M. 2005; Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 71:8174–8182 [CrossRef]
    [Google Scholar]
  8. Duncan K., Jennings E., Buck P., Wells H., Kolhatkar R., Sublette K., Potter W., Todd T. 2003; Multi-species ecotoxicity assessment of petroleum-contaminated soil. Soil Sediment Contam 12:181–206 [CrossRef]
    [Google Scholar]
  9. Ehrenreich P., Behrends A., Harder J., Widdel F. 2000; Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Fry N. K., Warwick S., Saunders N. S. A., Embley T. M. 1991; The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae . J Gen Microbiol 137:1215–1222 [CrossRef]
    [Google Scholar]
  12. Herrick J. B., Madsen E. L., Batt C. A., Ghiorse W. C. 1993; Polymerase chain reaction amplification of naphthalene catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microbiol 59:687–694
    [Google Scholar]
  13. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology vol 3B pp  117–132 Edited by Norris J. R., Robbins D. W. New York: Academic Press;
    [Google Scholar]
  14. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  15. Kniemeyer O., Fischer T., Wilkes H., Glöckner F. O., Widdel F. 2003; Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768 [CrossRef]
    [Google Scholar]
  16. Kropp K. G., Davidova I. A., Suflita J. M. 2000; Anaerobic oxidation of n -dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66:5393–5398 [CrossRef]
    [Google Scholar]
  17. Lovley D. R., Phillips E. J. P. 1986; Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl Environ Microbiol 52:751–757
    [Google Scholar]
  18. McInerney M. J., Stams A. J. M., Boone D. R. 2005; Genus I. Syntrophobacter Boone and Bryant 1984, 355VP(Effective publication: Boone and Bryant 1980, 631. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 part C pp  1021–1027 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Mullins T. D., Britschgi T. B., Krest R. L., Giovannoni S. J. 1995; Genetic comparisons reveal the same unknown bacteria lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158 [CrossRef]
    [Google Scholar]
  21. Muyzer G., De Waal E. C., Uitterlinden A. G. 1993; Profiling of microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  22. Rabus R., Wilkes H., Behrends A., Armstroff A., Fischer T., Widdel F. 2001; Anaerobic initial reaction of n -alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n -hexane metabolism. J Bacteriol 183:1707–1715 [CrossRef]
    [Google Scholar]
  23. Rees G., Grassia G., Sheehy A., Dwivedi P., Patel B. 1995; Desulfacinum infernum gen. nov., sp. nov. a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89 [CrossRef]
    [Google Scholar]
  24. Rozanova E. P., Tourova T. P., Kolganova T. V., Lysenko A. M., Mityushina L. L., Yusupov S. K., Belyaev S. S. 2001; Desufacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology (English translation of Mikrobiologiia ) 70536–542
    [Google Scholar]
  25. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458 [CrossRef]
    [Google Scholar]
  26. Sheridan P. P., Miteva V. I., Brenchley J. E. 2003; Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160 [CrossRef]
    [Google Scholar]
  27. Sievert S. M., Kuever J. 2000; Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece. Int J Syst Evol Microbiol 50:1239–1246 [CrossRef]
    [Google Scholar]
  28. So C. M., Young L. Y. 1999; Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976
    [Google Scholar]
  29. So C. M., Phelps C. D., Young L. Y. 2003; Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900 [CrossRef]
    [Google Scholar]
  30. Swofford D. L. 2002 paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  31. Tanner R. 1997; Cultivation of bacteria and fungi. In Manual of Environmental Microbiology pp  52–60 Edited by Hurst C. J., Knudsen G. R., McInerney M. J., Stetzenbach L. D., Walter M. V. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae . Quantitative measurements of growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [CrossRef]
    [Google Scholar]
  34. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes vol 4 pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  35. Widdel F., Pfennig N. 1992; The genus Desulfuromonas and other gram-negative sulfur-reducing eubacteria. In The Prokaryotes vol. 4 pp  3379–3389 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64398-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64398-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error