sp. nov., isolated from soil of a ginseng field Free

Abstract

A Gram-positive, aerobic, coccus-shaped, non-endospore-forming bacterium (Gsoil 633) was isolated from soil from a ginseng field in Pocheon province in South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 633 was shown to belong to the family . The closest phylogenetic relative was DSM 19555, with 96.1 % sequence similarity; the sequence similarity to other members of the family was less than 95.4 %. The isolate was characterized chemotaxonomically as having -2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H) as the predominant menaquinone and anteiso-C, iso-C and iso-C as the major fatty acids. The G+C content of the genomic DNA was 69.8 mol%. The morphological and chemotaxonomic properties of the isolate were consistent with those of , but the results of physiological and biochemical tests allowed the phenotypic differentiation of strain Gsoil 633 from this species. Therefore, strain Gsoil 633 represents a novel species, for which the name sp. nov. is proposed. The type strain is Gsoil 633 (=KCTC 13940=DSM 17942).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64395-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/713.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64395-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  4. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  5. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  6. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  7. Im W.-T., Jung H.-M., Cui Y.-S., Liu Q.-M., Zhang S.-L., Lee S.-T. 2005; Cultivation of the three hundreds of bacterial species from the soil of the ginseng field and mining the novel lineage bacteria. In Proceedings of the International Meeting of the Federation of Korean Microbiological Societies , abstract A035p– 169 Seoul: Federation of Korean Microbiological Societies;
    [Google Scholar]
  8. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  9. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  11. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipase. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp  2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  15. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamakata Y. 1995; Microlunatus phosphovorus gen. nov., sp. nov. a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  19. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  22. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  23. Widdel F., Kohring G., Mayer F. 1983; Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov., sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64395-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64395-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed