1887

Abstract

A total of 26 isolates of non-fermenting, Gram-negative rods, obtained between 1980 and 2004 by various clinical laboratories in Belgium, with phenotypic characteristics resembling those of members of the genera and (indole-positive) and a biochemical profile resembling that of CDC group II-h, but urease-positive, were collected at the Université Catholique de Louvain Microbiology Laboratory, Belgium. The 16S rRNA gene sequences were determined for most of the isolates and showed 94–95 % similarity with the type strain of as the closest relative, indicating that these isolates might belong to a separate genus. Furthermore, the 16S rRNA gene sequences of the isolates were similar, but two clusters (genomovars) could be distinguished. The sequence similarities were 99.5–100 % for the 14 isolates of genomovar 1 and 99.4–100 % for the 12 isolates of genomovar 2. The similarity between the two clusters was 98.3–99.5 %. The presence of two clearly different groups was corroborated by using tRNA intergenic length polymorphism analysis, which also enabled differentiation of the novel species from all other species studied thus far using this technique. DNA–DNA hybridization results excluded a close relatedness to . The DNA G+C contents of the reference strains of genomovars 1 and 2 were 33.8±0.4 and 34.4±0.2 mol%, respectively. The name gen. nov., sp. nov., is proposed for this group, comprising two closely related genomovars. The type strain of the species and reference strain for genomovar 1 is NF 993 (=CCUG 51536=CIP 108861), which was isolated from a surgical wound. The reference strain for genomovar 2 is NF 770 (=CCUG 51537=CIP 108860), which was isolated from blood.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64393-0
2006-10-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2323.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64393-0&mimeType=html&fmt=ahah

References

  1. Baele, M., Baele, P., Vaneechoutte, M., Storms, V., Butaye, P., Devriese, L. A., Verschraegen, G., Gillis, M. & Haesebrouck, F. ( 2000; ). Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38, 4201–4207.
    [Google Scholar]
  2. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  3. Hollis, D. G., Daneshvar, M. I., Moss, C. W. & Baker, C. N. ( 1995; ). Phenotypic characteristics, fatty acid composition, and isoprenoid quinine content of CDC group IIg bacteria. J Clin Microbiol 33, 762–764.
    [Google Scholar]
  4. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K. ( 2003; ). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef]
    [Google Scholar]
  5. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  6. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J. ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef]
    [Google Scholar]
  7. Kim, K. K., Kim, M. K., Lim, J. H., Park, H. Y. & Lee, S.-T. ( 2005; ). Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55, 1287–1293.[CrossRef]
    [Google Scholar]
  8. Laffineur, K., Janssens, M., Charlier, J., Avesani, V., Wauters, G. & Delmée, M. ( 2002; ). Biochemical and susceptibility tests useful for identification of nonfermenting gram-negative rods. J Clin Microbiol 40, 1085–1087.[CrossRef]
    [Google Scholar]
  9. Lind, E. & Ursing, J. ( 1986; ). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA–DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94, 205–213.
    [Google Scholar]
  10. Martin, R., Riley, P. S., Hollis, D. G., Weaver, R. E. & Krichevsky, M. I. ( 1981; ). Characterization of some groups of gram-negative nonfermentative bacteria by the carbon source alkalinization technique. J Clin Microbiol 14, 39–47.
    [Google Scholar]
  11. Nemec, A., De Baere, T., Tjernberg, I., Vaneechoutte, M., van der Reijden, T. J. K. & Dijkshoorn, L. ( 2001; ). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51, 1891–1899.[CrossRef]
    [Google Scholar]
  12. Peña, A., Valens, M., Santos, F., Buczolits, S., Antón, J., Kämpfer, P., Busse, H.-J., Amann, R. & Rosselló-Mora, R. ( 2005; ). Intraspecific comparative analysis of the species Salinibacter ruber. Extremophiles 9, 151–161.[CrossRef]
    [Google Scholar]
  13. Schreckenberger, P. C., Daneshvar, M. I., Weyant, S. R. & Hollis, D. G. ( 2003; ). Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. In Manual of Clinical Microbiology, 8th edn, pp. 749–779. Edited by P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller & R. H. Yolken. Washington, DC: American Society for Microbiology.
  14. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B. ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef]
    [Google Scholar]
  15. Wauters, G., Charlier, J., Janssens, M. & Delmée, M. ( 2001; ). Brevibacterium paucivorans sp. nov., from human clinical specimens. Int J Syst Evol Microbiol 51, 1703–1707.[CrossRef]
    [Google Scholar]
  16. Young, C.-C., Kämpfer, P., Shen, F.-T., Lai, W.-A. & Arun, A. B. ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef]
    [Google Scholar]
  17. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64393-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64393-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error