1887

Abstract

A Gram-negative, motile, rod-shaped organism, strain AP13, able to produce yellow-pigmented colonies, was isolated from the drinking water distribution system of Seville (Spain) and was characterized by using a polyphasic taxonomic approach. In 16S rRNA gene sequence comparisons, strain AP13 exhibited 96.9–95.6 % similarity with respect to the five recognized species of the genus . The DNA G+C content of strain AP13 was 66.0 mol%, a value that supports the affiliation of strain AP13 to the genus . DNA–DNA hybridization data and phenotypic properties confirmed that strain AP13 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AP13 (=CECT 7142=CCM 7363=DSM 18055=JCM 13879).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64389-0
2006-10-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2449.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64389-0&mimeType=html&fmt=ahah

References

  1. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  2. Bodour A. A., Wang J. M., Brusseau M. L., Maier R. M. 2003; Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5:888–895 [CrossRef]
    [Google Scholar]
  3. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1974 Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  5. D'Angelo-Picard C., Faure D., Penot I., Dessaux Y. 2005; Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808 [CrossRef]
    [Google Scholar]
  6. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef]
    [Google Scholar]
  7. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–681 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  8. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  9. Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int J Syst Bacteriol 34:56–70 [CrossRef]
    [Google Scholar]
  10. Kovács N. 1956; Identification of Pseudomonas pyocyanea by oxidase reaction. Nature 178:703–704
    [Google Scholar]
  11. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 1998; Massilia timonae gen. nov., sp. nov. isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852
    [Google Scholar]
  12. Lindquist D., Murrill D., Burran W. P., Winans G., Janda J. M., Probert W. 2003; Characteristics of Massilia timonae and Massilia timonae -like isolates from human patients, with an emended description of the species. J Clin Microbiol 41:192–196 [CrossRef]
    [Google Scholar]
  13. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenernegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  17. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina and Deleya salina , and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  18. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  19. Mormile M. R., Romine M. F., García M. T., Ventosa A., Bailey T. J., Peyton B. M. 1999; Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22:551–558 [CrossRef]
    [Google Scholar]
  20. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp  217–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  21. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22 [CrossRef]
    [Google Scholar]
  22. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Ventosa A., Gutierrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus , Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136 [CrossRef]
    [Google Scholar]
  25. Wery N., Gerike U., Sharman A., Chaudhuri J. B., Hough D. W., Danson M. J. 2003; Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from antarctic soil. Appl Environ Microbiol 69:1457–1464 [CrossRef]
    [Google Scholar]
  26. Zhang Y. Q., Li W. J., Zhang K. Y., Tian X. P., Jiang Y., Xu L. H., Jiang C. L., La R. 2006; Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56, 459–463 [CrossRef]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64389-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64389-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error