1887

Abstract

A Gram-negative, motile, rod-shaped organism, strain AP13, able to produce yellow-pigmented colonies, was isolated from the drinking water distribution system of Seville (Spain) and was characterized by using a polyphasic taxonomic approach. In 16S rRNA gene sequence comparisons, strain AP13 exhibited 96.9–95.6 % similarity with respect to the five recognized species of the genus . The DNA G+C content of strain AP13 was 66.0 mol%, a value that supports the affiliation of strain AP13 to the genus . DNA–DNA hybridization data and phenotypic properties confirmed that strain AP13 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AP13 (=CECT 7142=CCM 7363=DSM 18055=JCM 13879).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64389-0
2006-10-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2449.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64389-0&mimeType=html&fmt=ahah

References

  1. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45, 493–496.
    [Google Scholar]
  2. Bodour, A. A., Wang, J. M., Brusseau, M. L. & Maier, R. M. ( 2003; ). Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5, 888–895.[CrossRef]
    [Google Scholar]
  3. Christensen, W. B. ( 1946; ). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52, 461–466.
    [Google Scholar]
  4. Cowan, S. T. & Steel, K. J. ( 1974; ). Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press.
  5. D'Angelo-Picard, C., Faure, D., Penot, I. & Dessaux, Y. ( 2005; ). Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7, 1796–1808.[CrossRef]
    [Google Scholar]
  6. De Ley, J. & Tijtgat, R. ( 1970; ). Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36, 461–474.[CrossRef]
    [Google Scholar]
  7. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  8. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  9. Kersters, K., Hinz, K.-H., Hertle, A., Segers, P., Lievens, A., Siegmann, O. & De Ley, J. ( 1984; ). Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int J Syst Bacteriol 34, 56–70.[CrossRef]
    [Google Scholar]
  10. Kovács, N. ( 1956; ). Identification of Pseudomonas pyocyanea by oxidase reaction. Nature 178, 703–704.
    [Google Scholar]
  11. La Scola, B., Birtles, R. J., Mallet, M. N. & Raoult, D. ( 1998; ). Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36, 2847–2852.
    [Google Scholar]
  12. Lindquist, D., Murrill, D., Burran, W. P., Winans, G., Janda, J. M. & Probert, W. ( 2003; ). Characteristics of Massilia timonae and Massilia timonae-like isolates from human patients, with an emended description of the species. J Clin Microbiol 41, 192–196.[CrossRef]
    [Google Scholar]
  13. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenernegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  15. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  16. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  17. Mellado, E., Moore, E. R. B., Nieto, J. J. & Ventosa, A. ( 1995; ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina and Deleya salina, and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45, 712–716.[CrossRef]
    [Google Scholar]
  18. Miller, L. T. ( 1982; ). A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  19. Mormile, M. R., Romine, M. F., García, M. T., Ventosa, A., Bailey, T. J. & Peyton, B. M. ( 1999; ). Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22, 551–558.[CrossRef]
    [Google Scholar]
  20. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn, pp. 217–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  21. Sierra, G. ( 1957; ). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23, 15–22.[CrossRef]
    [Google Scholar]
  22. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  23. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  24. Ventosa, A., Gutierrez, M. C., Kamekura, M. & Dyall-Smith, M. L. ( 1999; ). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49, 131–136.[CrossRef]
    [Google Scholar]
  25. Wery, N., Gerike, U., Sharman, A., Chaudhuri, J. B., Hough, D. W. & Danson, M. J. ( 2003; ). Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from antarctic soil. Appl Environ Microbiol 69, 1457–1464.[CrossRef]
    [Google Scholar]
  26. Zhang, Y. Q., Li, W. J., Zhang, K. Y., Tian, X. P., Jiang, Y., Xu, L. H., Jiang, C. L. & La, R. ( 2006; ). Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56, 459–463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64389-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64389-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error