1887

Abstract

A bacterial strain (designated KMY03) that possesses -glucosidase activity was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. The bacterium was found to comprise Gram-negative, rod-shaped, motile cells with unipolar polytrichous flagella. On the basis of 16S rRNA gene sequence similarity, strain KMY03 was shown to belong to the family of the , being most closely related to LMG 19076 (97.8 %), LMG 20594 (97.5 %), LMG 21463 (97.4 %) and LMG 22146 (97.3 %). Chemotaxonomic data (major ubiquinone, Q-8; major fatty acids, C cyclo, C, C cyclo 8 and summed feature 2) supported the affiliation of the novel strain with the genus . The results of DNA–DNA hybridizations and physiological and biochemical tests allowed the strain to be differentiated genotypically and phenotypically from species with validly published names. On the basis of these data, strain KMY03 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KMY03 (=KCTC 12389=NBRC 100965).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64387-0
2006-11-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2529.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64387-0&mimeType=html&fmt=ahah

References

  1. An D. S., Im W. T., Yang H. C., Yang D. C., Lee S. T. 2005; Dyella ginsengisoli sp. nov., a β -glucosidase-producing bacterium. Int J Syst Evol Microbiol 55:1625–1628 [CrossRef]
    [Google Scholar]
  2. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1995 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology , 3rd edn. New York: Wiley;
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual , 6th edn. Menlo Park, CA: Benjamin Cummings;
    [Google Scholar]
  6. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729 [CrossRef]
    [Google Scholar]
  7. Coenye T., Laevens S., Willems A., Ohlen M., Hannant W., Govan J. R. W., Falsen E., Vandamme P. 2001; Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov. two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107 [CrossRef]
    [Google Scholar]
  8. Coenye T., Henry D., Speert D. P., Vandamme P. 2004; Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst Appl Microbiol 27:623–627 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  12. Goris J., Dejonghe W., Falsen E., De Clerck E., Geeraerts B., Willems A., Top E. M., Vandamme P., De Vos P. 2002; Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp.nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352 [CrossRef]
    [Google Scholar]
  13. Goris J., De Vos P., Caballero-Mellado J., Park J., Falsen E., Quensen J. F. III, Tiedje J. M., Vandamme P. 2004; Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 54:1677–1681 [CrossRef]
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Im W.-T., Bae H.-S., Yokota A., Lee S. T. 2004; Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855 [CrossRef]
    [Google Scholar]
  16. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in the α -4 subgroup of the Proteobacteria . J Microbiol 43:111–116
    [Google Scholar]
  17. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  19. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipase. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  25. Sessitsch A., Coenye T., Sturz A. V. 9 other authors 2005; Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192 [CrossRef]
    [Google Scholar]
  26. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  28. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64387-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64387-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error