1887

Abstract

An intracellular bacterium with the unique ability to enter mitochondria exists in the European vector of Lyme disease, the hard tick . Previous phylogenetic analyses based on 16S rRNA gene sequences suggested that the bacterium formed a divergent lineage within the (). Here, we present additional phylogenetic evidence, based on the gene sequence, that confirms the phylogenetic position of the bacterium. Based on these data, as well as electron microscopy (EM), hybridization and other observations, we propose the name ‘ Midichloria mitochondrii’ for this bacterium. The symbiont appears to be ubiquitous in females of across the tick's distribution, while lower prevalence is observed in males (44 %). Based on EM and hybridization studies, the presence of ‘ M. mitochondrii’ in females appears to be restricted to ovarian cells. The bacterium was found to be localized both in the cytoplasm and in the intermembrane space of the mitochondria of ovarian cells. ‘ M. mitochondrii’ is the first bacterium to be identified that resides within animal mitochondria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64386-0
2006-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2535.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64386-0&mimeType=html&fmt=ahah

References

  1. Bandi C., Anderson T. J. C., Genchi C., Blaxter M. 1998; Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B 265:2407–2413 [CrossRef]
    [Google Scholar]
  2. Beninati T., Lo N., Sacchi L., Genchi C., Noda H., Bandi C. 2004; A novel alpha-Proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes ricinus . Appl Environ Microbiol 70:2596–2602 [CrossRef]
    [Google Scholar]
  3. Black W. C., Piesman J. 1994; Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A 91:10034–10038 [CrossRef]
    [Google Scholar]
  4. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  5. Dumler J. S., Barbet A. F., Bekker C. P., Dasch G. A., Palmer G. H., Ray S. C., Rikihisa Y., Rurangirwa F. R. 2001; Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma , Cowdria with Ehrlichia and Ehrlichia with Neorickettsia , descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila . Int J Syst Evol Microbiol 51:2145–2165 [CrossRef]
    [Google Scholar]
  6. Fritsche T. R., Horn M., Seyedirashti S., Gautom R. K., Schleifer K. H., Wagner M. 1999; In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales . Appl Environ Microbiol 65:206–212
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T. G. 2004; Taxonomic Outline of the Prokaryotes. In Bergey's Manual of Systematic Bacteriology , 2nd edn. Release 5.0. New York: Springer; http://dx.doi.org/10.1007/bergeysoutline
    [Google Scholar]
  8. Goddard J., Sumner J. W., Nicholson W. L., Paddock C. D., Shen J., Piesman J. 2003; Survey of ticks collected in Mississippi for Rickettsia , Ehrlichia , and Borrelia species. J Vector Ecol 28:184–189
    [Google Scholar]
  9. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  10. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H. 2005; The hierarchical system of the ‘ Alphaproteobacteria ’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919 [CrossRef]
    [Google Scholar]
  11. Lewis D. 1979; The detection of rickettsia-like microorganisms within the ovaries of female Ixodes ricinus ticks. Z Parasitenkd 59:295–298 [CrossRef]
    [Google Scholar]
  12. Lo N., Beninati T., Sassera D. 13 other authors 2006; Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus . Environ Microbiol 8:1280–1287 [CrossRef]
    [Google Scholar]
  13. Mediannikov O. I., Ivanov L. I., Nishikawa M., Saito R., Sidel'nikov I. N., Zdanovskaia N. I., Mokretsova E. V., Tarasevich I. V., Suzuki H. 2004; Microorganism “Montezuma” of the order Rickettsiales : the potential causative agent of tick-borne disease in the Far East of Russia. Zh Mikrobiol Epidemiol Immunobiol 1:7–13 (in Russian
    [Google Scholar]
  14. Murray R. G., Stackebrandt E. 1995; Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187 [CrossRef]
    [Google Scholar]
  15. Nylander J. A. A. 2002 MrModeltest Department of Systematic Zoology, Uppsala University; Uppsala:
    [Google Scholar]
  16. Parola P. 2004; Tick-borne rickettsial diseases: emerging risks in Europe. Comp Immunol Microbiol Infect Dis 27:297–304 [CrossRef]
    [Google Scholar]
  17. Parola P., Cornet J. P., Sanogo Y. O., Miller R. S., Thien H. V., Gonzalez J. P., Raoult D., Telford S. R., Wongsrichanalai C. 2003; Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and other eubacteria in ticks from the Thai-Myanmar border and Vietnam. J Clin Microbiol 41:1600–1608 [CrossRef]
    [Google Scholar]
  18. Sacchi L., Bigliardi E., Corona S., Beninati T., Lo N., Franceschi A. 2004; A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus . Tissue Cell 36:43–53 [CrossRef]
    [Google Scholar]
  19. Sanogo Y. O., Parola P., Shpynov S., Camicas J. L., Brouqui P., Caruso G., Raoult D. 2003; Genetic diversity of bacterial agents detected in ticks removed from asymptomatic patients in Northeastern Italy. Ann N Y Acad Sci 990:182–190 [CrossRef]
    [Google Scholar]
  20. Santos S. R., Ochman H. 2004; Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759 [CrossRef]
    [Google Scholar]
  21. Schabereiter-Gurtner C., Lubitz W., Rolleke S. 2003; Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods 52:251–260
    [Google Scholar]
  22. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
  25. Zhu Z., Aeschlimann A., Gern L. 1992; Rickettsia-like microorganisms in the ovarian primordia of molting Ixodes ricinus (Acari: Ixodidae) larvae and nymphs. Ann Parasitol Hum Comp 67:99–110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64386-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64386-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error