1887

Abstract

Strain TR53, a Gram-negative, non-motile, non-spore-forming and strictly aerobic coccobacillus, isolated from the drinking water distribution system of Seville, Spain, was subjected to polyphasic taxonomic analysis using a combination of phenotypic, genotypic and phylogenetic features. Phylogenetic analysis of 16S rRNA gene sequences showed that strain TR53 had highest similarity to members of the genus , with sequence similarity values between 95.7 % (to genomospecies 5 strain ATCC 49960) and 94.0 % (to subsp. ATCC 49956). On the basis of its phenotypic characteristics, 16S rRNA gene sequence data and DNA G+C content (68.6 mol%), strain TR53 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is TR53 (=CECT 7131=JCM 13556).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64379-0
2006-10-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2291.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64379-0&mimeType=html&fmt=ahah

References

  1. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45, 493–496.
    [Google Scholar]
  2. Christensen, W. B. ( 1946; ). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52, 461–466.
    [Google Scholar]
  3. Cohen, M. F., Han, X. Y. & Mazzola, M. ( 2004; ). Molecular and physiological comparison of Azospirillum spp. isolated from Rhizoctonia solani mycelia, wheat rhizosphere, and human skin wounds. Can J Microbiol 50, 291–297.[CrossRef]
    [Google Scholar]
  4. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  5. Doronina, N. V., Trotsenko, Y. A., Krausova, V. I., Boulygina, E. S. & Tourova, T. P. ( 1998; ). Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48, 1313–1321.[CrossRef]
    [Google Scholar]
  6. Gallego, V., García, M. T. & Ventosa, A. ( 2005a; ). Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55, 281–287.[CrossRef]
    [Google Scholar]
  7. Gallego, V., García, M. T. & Ventosa, A. ( 2005b; ). Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol 55, 1429–1433.[CrossRef]
    [Google Scholar]
  8. Gallego, V., García, M. T. & Ventosa, A. ( 2005c; ). Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55, 2333–2337.[CrossRef]
    [Google Scholar]
  9. Gallego, V., García, M. T. & Ventosa, A. ( 2006; ). Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56, 339–342.[CrossRef]
    [Google Scholar]
  10. Han, X. Y., Pham, A. S., Tarrand, J. J., Rolston, K. V., Helsel, L. O. & Levett, P. N. ( 2003; ). Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp. nov. and Roseomonas gilardii subsp. rosea subsp. nov. Am J Clin Pathol 120, 256–264.[CrossRef]
    [Google Scholar]
  11. Jiang, C.-Y., Dai, X., Wang, B.-J., Zhou, Y.-G. & Liu, S.-J. ( 2006; ). Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56, 25–28.[CrossRef]
    [Google Scholar]
  12. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  13. Kersters, K., Hinz, K.-H., Hertle, A., Segers, P., Lievens, A., Siegmann, O. & De Ley, J. ( 1984; ). Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int J Syst Bacteriol 34, 56–70.[CrossRef]
    [Google Scholar]
  14. Kovacs, N. ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703.
    [Google Scholar]
  15. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, N., Neumaier, J., Bachleitner, M. & Schleifer, K.-H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  17. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  18. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4, 109–118.
    [Google Scholar]
  19. McLean, T. W., Rouster-Stevens, K., Woods, C. R. & Shetty, A. K. ( 2006; ). Catheter-related bacteremia due to Roseomonas species in pediatric hematology/oncology patients. Pediatr Blood Cancer 46, 514–516.[CrossRef]
    [Google Scholar]
  20. Mellado, E., Moore, E. R. B., Nieto, J. J. & Ventosa, A. ( 1995; ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45, 712–716.[CrossRef]
    [Google Scholar]
  21. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  22. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn, pp. 217–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  23. Rihs, J. D., Brenner, D. J., Weaver, R. E., Steigerwalt, A. G., Hollis, D. G. & Yu, V. L. ( 1993; ). Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 31, 3275–3283.
    [Google Scholar]
  24. September, S. M., Brozel, V. S. & Venter, S. N. ( 2004; ). Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 70, 7571–7573.[CrossRef]
    [Google Scholar]
  25. Sfanos, K., Harmody, D., Dang, P., Ledger, A., Pomponi, S., McCarthy, P. & Lopez, J. ( 2005; ). A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28, 242–264.[CrossRef]
    [Google Scholar]
  26. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  27. Ventosa, A., Gutierrez, M. C., Kamekura, M. & Dyall-Smith, M. L. ( 1999; ). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49, 131–136.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64379-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64379-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error