1887

Abstract

A halophilic, Gram-negative, motile, non-sporulating bacterium designated strain FB1 was isolated from a wine-barrel-decalcification wastewater. The organism comprises straight rods and has a strictly respiratory metabolism with O. Strain FB1 grows optimally at 20–30 °C and 5–6 % NaCl. The predominant fatty acids were found to be C 9 (30.4 %), C (25.7 %), C 3-OH (10.3 %), C 9 (9.7 %) and C 7 (8.4 %). A phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a coherent cluster within the genus . The highest level of 16S rRNA gene sequence similarity (97.9 %) exhibited by strain FB1 was with the type strain of . However, the level of DNA–DNA relatedness between the novel strain and CIP 107686 was only 31.2 %. The DNA G+C content of strain FB1 was 58.7 mol%. On the basis of phenotypic and genotypic characteristics, and also phylogenetic evidence, strain FB1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FB1 (=DSM 17747=CCUG 52119).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64368-0
2006-11-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2511.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64368-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  3. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Cavallo J. D., Chardon H., Chidiac C. & 14 other authors 2004 Communiqué 2004 Paris: Comité de l'antibiogramme de la Société Française de Microbiologie; http://www.sfm.asso.fr
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  8. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Olivier B. 2000; Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.51c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  12. Gorshkova N. M., Ivanova E. P., Sergeev A. F., Zhukova N. V., Alexeeva Y., Wright J. P., Nicolau D. V., Mikhailov V. V., Christen R. 2003; Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078 [CrossRef]
    [Google Scholar]
  13. Humble M. W., King A., Philips I. 1977; API ZYM, a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277 [CrossRef]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  15. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria vol. I pp  109–140 Edited by Rodriguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  18. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85 [CrossRef]
    [Google Scholar]
  19. Marquez M. C., Ventosa A. 2005; Marinobacter hydrocarbonoclasticus Gauthier et al . 1992 and Marinobacter aquaeolei Nguyen et al . 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55:1349–1351 [CrossRef]
    [Google Scholar]
  20. Martín S., Márquez M. C., Sánchez-Porro C., Mellado E., Arahal D. R., Ventosa A. 2003; Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Nguyen B. H., Denner E. B. M., Dang T. C. H., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  23. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E. 2005; Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425
    [Google Scholar]
  25. Shieh W. Y., Jean W. D., Lin Y.-T., Tseng M. 2003; Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252 [CrossRef]
    [Google Scholar]
  26. Shivaji S., Gupta P., Chaturvedi P., Suresh K., Delille D. 2005; Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456 [CrossRef]
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Methods for General Microbiology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. I. Isolation of new sulphate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  31. Winker S., Woese C. R. 1991; A definition of the domains Archaea , Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165 [CrossRef]
    [Google Scholar]
  32. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Shin D.-Y., Kim I.-G., Kang K. H., Park Y.-H. 2003; Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53:563–568 [CrossRef]
    [Google Scholar]
  34. Yoon J.-H., Yeo S.-H., Kim I.-G., Oh T.-K. 2004; Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1799–1803 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64368-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64368-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error