1887

Abstract

Strain NCIMB 9991 is a Gram-positive, short rod-shaped, yellow-pigmented bacterium, with a high DNA G+C content, and was originally deposited in 1967 as sp. The bacterium is aerobic, non-motile, catalase-positive and oxidase-negative. Comparative 16S rRNA gene sequencing studies demonstrated that this strain was highly related genealogically to DSM 14012. Strain IAM 14817 (=NCIMB 9991) has the following characteristics: the predominant menaquinones are MK-9 and MK-10, the DNA G+C content is 68 mol%, the diamino acid in the cell wall is 2,4--diaminobutyric acid and the muramic acid in the peptidoglycan is of an acetyl type. The major fatty acid is 12-methyl tetradecanoic acid (anteiso-C), followed by 14-methyl hexadecanoic acid (anteiso-C), 14-methyl pentadecanoic acid (iso-C) and hexadecanoic acid (C). On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA–DNA hybridization and 16S rRNA gene sequence comparison, strain IAM 14817 represents a novel species within the genus , for which the name sp. nov. is proposed, with the type strain IAM 14817 (=NCIMB 9991=NBRC 15702).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64366-0
2006-10-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2337.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64366-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K. 2002; Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp.nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov.,sp. nov. Int J Syst Evol Microbiol 52:1441–1454 [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  3. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  5. Harper J. J., Davis G. H. G. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29:56–58 [CrossRef]
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  7. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  8. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004 Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54, 1669–1676 [CrossRef]
  9. Mikami H., Ishida Y. 1983; Post-column fluorometric detection of reducing sugars in high-performance liquid chromatography using arginine. Bunseki Kagaku 32:E207–E210 [CrossRef]
    [Google Scholar]
  10. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  11. Sasaki J., Chijimatsu M., Suzuki K. 1998; Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. Int J Syst Bacteriol 48:403–410 [CrossRef]
    [Google Scholar]
  12. Schleifer K. H., Kandler O. 1972; Peptidoglycan of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  13. Takagi H., Shida O., Kadowaki K., Komagata K., Udaka S. 1993; Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp.nov., Bacilluschoshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int J Syst Bacteriol 43:221–231 [CrossRef]
    [Google Scholar]
  14. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  15. Uchida K., Aida A. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249–260 [CrossRef]
    [Google Scholar]
  16. Wako Pure Chemical Industries; 1989; Technical note on the system of PTC-amino acid analysis . Osaka: Wako Pure Chemical Industries; Ltd (in Japanese
  17. Yokota A., Takeuchi M., Sakane T., Weiss N. 1993; Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Bacteriol 43:555–564 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64366-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64366-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error