1887

Abstract

A strictly anaerobic, xylanolytic bacterium, strain KB3, isolated from rice-plant residue in flooded anoxic rice-field soil in Japan, was characterized phenotypically and phylogenetically. Cells were Gram-negative, non-motile, non-spore-forming, short to filamentous rods. Growth of the strain was remarkably stimulated by the addition of haemin to the medium. The novel strain utilized various sugars including xylan, xylose, pectin and carboxymethylcellulose and produced acetate, propionate and succinate with a small amount of malate. Propionate production was stimulated by the addition of a B-vitamin mixture or cobalamin to the medium. The novel strain was slightly acidophilic with an optimum pH 5.7–6.2 and the optimum growth temperature was 30 °C. Oxidase, catalase and nitrate-reducing activities were negative. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C and iso-3-OH C. The major respiratory quinones were menaquinones MK-12(H) and MK-13(H). The genomic DNA G+C content was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence placed the strain in the phylum . The closest related species was with a 16S rRNA gene sequence similarity of 89.5 %. and were the next closest recognized species with sequence similarities of 89.1 %. Based on a comprehensive examination of the differences in phylogenetic, ecological, physiological and chemotaxonomic characteristics of strain KB3 and those of related species, a novel genus and species, gen. nov., sp. nov., is proposed to accommodate strain KB3. The type strain of the novel species is KB3 (=JCM 13648=DSM 17970).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64364-0
2006-09-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2215.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64364-0&mimeType=html&fmt=ahah

References

  1. Akasaka, H., Izawa, T., Ueki, K. & Ueki, A. ( 2003a; ). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43, 149–161.[CrossRef]
    [Google Scholar]
  2. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y. & Ueki, K. ( 2003b; ). Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 53, 1991–1998.[CrossRef]
    [Google Scholar]
  3. Akasaka, H., Ueki, K. & Ueki, A. ( 2004; ). Effects of plant residue extract and cobalamin on growth and propionate production of Propionicimonas paludicola isolated from plant residue in irrigated rice field soil. Microbes Environ 19, 112–119.[CrossRef]
    [Google Scholar]
  4. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  5. Avgustin, G., Wallace, R. J. & Flint, H. ( 1997; ). Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47, 284–288.[CrossRef]
    [Google Scholar]
  6. Boone, R. D. ( 2000; ). Biological formation and consumption of methane. In Atmospheric Methane, pp. 42–62. Edited by M. A. K. Khalil. Berlin: Springer.
  7. Chouari, R., Le Paslier, D., Daegelen, P., Ginestet, P., Weissenbach, J. & Sghir, A. ( 2005; ). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7, 1104–1115.[CrossRef]
    [Google Scholar]
  8. Garrity, G. M. & Holt, J. G. ( 2001; ). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  9. Holdeman, L. V. & Johnson, J. L. ( 1977; ). Bacteroides disiens sp. nov. and Bacteroides bivius sp. nov. from human clinical infections. Int J Syst Bacteriol 27, 337–345.[CrossRef]
    [Google Scholar]
  10. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  11. Holdeman, L. V., Kelly, R. W. & Moore, W. E. C. ( 1984; ). Genus I. Bacteroides Castellani and Chalmers 1919, 959. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 604–631. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  12. Hungate, R. E. ( 1966; ). The Rumen and Its Microbes. New York: Academic Press.
  13. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  14. Khalil, M. A. K. ( 2000; ). Atmospheric Methane. Berlin: Springer.
  15. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  16. Lawson, P. A., Falsen, E., Inganas, E., Weyant, R. S. & Collins, M. D. ( 2002; ). Dysgonomonas mossii sp. nov., from human sources. Syst Appl Microbiol 25, 194–197.[CrossRef]
    [Google Scholar]
  17. Leung, K.-P. & Folk, S. P. ( 2002; ). Effects of porphyrins and inorganic iron on the growth of Prevotella intermedia. FEMS Microbiol Lett 209, 15–29.[CrossRef]
    [Google Scholar]
  18. Lydell, C., Dowell, L., Sikaroodi, M., Gillevet, P. & Emerson, D. ( 2004; ). A population survey of members of the phylum Bacteroidetes isolated from salt marsh sediments along the east coast of the United States. Microb Ecol 48, 263–273.[CrossRef]
    [Google Scholar]
  19. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  20. Miyagawa, E., Azuma, R. & Suto, E. ( 1979; ). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25, 41–51.[CrossRef]
    [Google Scholar]
  21. Moore, L. V. H., Bourne, D. M. & Moore, W. E. C. ( 1994; ). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef]
    [Google Scholar]
  22. Paster, B. J., Dewhirst, F. E., Olsen, I. & Fraser, G. J. ( 1994; ). Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 176, 725–732.
    [Google Scholar]
  23. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  24. Sakamoto, M., Suzuki, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2004; ). Prevotella shahii sp. nov. and Prevotella salivae isolated from the human oral cavity. Int J Syst Evol Microbiol 54, 877–883.[CrossRef]
    [Google Scholar]
  25. Sakamoto, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2005; ). Prevotella multiformis sp. nov., isolated form human subgingival plaque. Int J Syst Evol Microbiol 55, 815–819.[CrossRef]
    [Google Scholar]
  26. Satoh, A., Watanabe, M., Ueki, A. & Ueki, K. ( 2002; ). Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe 8, 233–246.[CrossRef]
    [Google Scholar]
  27. Seiler, W., Holzapfel-Pschorn, A., Conrad, R. & Scharffe, D. ( 1984; ). Methane emission from rice paddies. J Atmos Chem 1, 241–268.
    [Google Scholar]
  28. Shah, H. N. & Collins, D. M. ( 1980; ). Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48, 75–87.[CrossRef]
    [Google Scholar]
  29. Shah, H. N. & Collins, D. M. ( 1989; ). Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39, 85–87.[CrossRef]
    [Google Scholar]
  30. Shah, H. N. & Collins, D. M. ( 1990; ). Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40, 205–208.[CrossRef]
    [Google Scholar]
  31. Shah, H. N., Collins, D. M., Watabe, J. & Mitsuoka, T. ( 1985; ). Bacteroides oulorum sp. nov., a non-pigmented saccharolytic species from the oral cavity. Int J Syst Bacteriol 35, 193–197.[CrossRef]
    [Google Scholar]
  32. Takai, Y. ( 1970; ). The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 6, 238–244.
    [Google Scholar]
  33. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  34. Ueki, A. & Suto, T. ( 1979; ). Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25, 185–196.[CrossRef]
    [Google Scholar]
  35. Ueki, A., Matsuda, K. & Ohtsuki, C. ( 1986; ). Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32, 111–123.[CrossRef]
    [Google Scholar]
  36. Ueki, A., Kainuma, Y., Fujii, H. & Ueki, K. ( 2000; ). Seasonal variations in vertical distribution of methanogenic activity and Fe(II) content and relationship between them in wetland rice field soil. Soil Sci Plant Nutr 46, 401–415.
    [Google Scholar]
  37. Ueki, A., Akasaka, H., Suzuki, D. & Ueki, K. ( 2006; ). Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56, 39–44.[CrossRef]
    [Google Scholar]
  38. Wassmann, R., Neue, H. U., Lantin, R. S., Buendia, L. V. & Rennenberg, H. ( 2000a; ). Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr Cycl Agroecosys 58, 1–12.[CrossRef]
    [Google Scholar]
  39. Wassmann, R., Neue, H. U., Lantin, R. S., Makarim, K., Chareonsilp, N., Buendia, L. V. & Rennenberg, H. ( 2000b; ). Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice. Nutr Cycl Agroecosys 58, 13–22.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64364-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64364-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error