1887

Abstract

A novel group associated with [ Wang (2006) , , 502–517] was further characterized. The seven strains in this group showed similar protein patterns and were different from defined species in SDS-PAGE of whole-cell proteins. The representative strain CCBAU 61158 formed a novel lineage in phylogenetic analyses of 16S rRNA, , and genes. However, its gene sequence was more similar to that of R602sp than to those of species. DNA–DNA relatedness between CCBAU 61158 and reference strains of defined species was lower than 34.1 %. These results indicated that this group was a unique genomic species. The subtropical distribution, host origin, PCR-RFLP patterns of 16S rRNA genes, fatty acid profile and a series of phenotypic characteristics could be used as distinctive features of this group. This group is therefore proposed as a novel species, sp. nov., with CCBAU 61158 (=LMG 23507=USDA 4964) as the type strain. Strain CCBAU 61158 could form effective nodules on , , and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64363-0
2007-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1192.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64363-0&mimeType=html&fmt=ahah

References

  1. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397 [CrossRef]
    [Google Scholar]
  2. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov., isolated from the root nodules of Astragalus sinicus . Int J Syst Bacteriol 41:275–280 [CrossRef]
    [Google Scholar]
  3. Chen W., Wang E., Wang S., Li Y., Chen X., Li Y. 1995; Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int J Syst Bacteriol 45:153–159 [CrossRef]
    [Google Scholar]
  4. Chen W. X., Tan Z. Y., Gao J. L., Li Y., Wang E. T. 1997; Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873 [CrossRef]
    [Google Scholar]
  5. de Lajudie P., Willems A., Nick G., Moreira F., Molouba F., Hoste B., Torck U., Neyra M., Collins M. D. other authors 1998; Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382 [CrossRef]
    [Google Scholar]
  6. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754
    [Google Scholar]
  7. Gao J. L., Turner S. L., Kan F. L., Wang E. T., Tan Z. Y., Qiu Y. H., Gu J., Terefework Z., Young J. P. W. other authors 2004; Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov. isolated from Astragalus adsurgens growing in the northern regions of China. . Int J Syst Evol Microbiol 54, 2003–2012 [CrossRef]
  8. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lioyd-Macgilp S. A., Young J. P. W. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048 [CrossRef]
    [Google Scholar]
  9. Ghosh W., Roy P. 2006; Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97 [CrossRef]
    [Google Scholar]
  10. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley J., Jarvis B. D. W., Roslycky E. B. other authors 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulation bacteria. Int J Syst Bacteriol 41:582–587 [CrossRef]
    [Google Scholar]
  11. Graham P. H., Sadowsky M. J., Tighe S. W., Thompson J. A., Howieson J. G., Thomas R. 1995; Differences among strains of Bradyrhizobium in fatty acid-methyl ester analysis. Can J Microbiol 41:1038–1042 [CrossRef]
    [Google Scholar]
  12. Hashimoto J. G., Stevenson B. S., Schmidt T. M. 2003; Rates and consequences of recombination between rRNA operons. J Bacteriol 185:966–972 [CrossRef]
    [Google Scholar]
  13. Haukka K., Lindström K., Young J. P. W. 1996; Diversity of partial 16S rRNA sequences among and within strains of African rhizobia isolated from Acacia and Prosopis . Syst Appl Microbiol 19:352–359 [CrossRef]
    [Google Scholar]
  14. Haukka K., Lindstrom K., Young J. P. W. 1998; Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426
    [Google Scholar]
  15. Jarvis B. D. W., Tighe S. W. 1994; Rapid identification of Rhizobium species based on cellular fatty acid analysis. Plant Soil 161:31–41 [CrossRef]
    [Google Scholar]
  16. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M. 1997; Transfer of Rhizobium loti , Rhizobium huakuii , Rhizobium ciceri , Rhizobium mediterraneum , and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898 [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132 in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  19. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N. 2001; Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  21. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  22. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici : a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. . Int J Syst Bacteriol 41:417–426 [CrossRef]
    [Google Scholar]
  23. Nour S. M., Fernandez M. P., Normand P., Cleyet-Marel J. C. 1994; Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas ( Cicer arietinum L.). Int J Syst Bacteriol 44:511–522 [CrossRef]
    [Google Scholar]
  24. Parker M. A. 2004; rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica. Syst Appl Microbiol 27:334–342 [CrossRef]
    [Google Scholar]
  25. Scholla M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in Bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  27. Stepkowski T., Czaplinska M., Miedzinska K., Moulin L. 2003; The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria . Syst Appl Microbiol 26:483–494 [CrossRef]
    [Google Scholar]
  28. Tan Z. Y., Wang E. T., Gao J. L., Martinez-Romero E., Chen W. X. 1997; Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879 [CrossRef]
    [Google Scholar]
  29. Tan Z. Y., Kan F. L., Peng G. X., Wang E. T., Reinhold-Hurek B., Chen W. X. 2001; Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium , Bradyrhizobium , Mesorhizobium , Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  33. Turner S. L., Young J. P. W. 2000; The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319 [CrossRef]
    [Google Scholar]
  34. Ueda K., Seki T., Kudo T., Yoshida T., Kataoka M. 1999; Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 181:78–82
    [Google Scholar]
  35. van Berkum P., Beyene D., Bao G., Campbell T. A., Eardly B. D. 1998; Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22 [CrossRef]
    [Google Scholar]
  36. van Berkum P., Terefework Z., Paulin L., Suomalainen S., Lindström K., Eardly B. D. 2003; Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998 [CrossRef]
    [Google Scholar]
  37. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  38. Van de Peer Y., De Wachter Y. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  39. Vauterin L., Vauterin P. 1992; Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41
    [Google Scholar]
  40. Velázquez E., Igual J. M., Willems A., Fernández M. P., Muñoz E., Mateos P. F., Abril A., Toro N., Normand P. other authors 2001; Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021 [CrossRef]
    [Google Scholar]
  41. Vincent J. M. 1970 Manual for the Practical Study of the Root-Nodule Bacteria , IBP Handbook 15 Oxford: Blackwell;
    [Google Scholar]
  42. Vinuesa P., León-Barrios M., Silva C., Willems A., Jarabo-Lorenzo A., Pérez-Galdona R., Werner D., Martínez-Romero E. 2005; Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum , Bradyrhizobium genospecies α and Bradyrhizobium genospecies β . Int J Syst Evol Microbiol 55:569–575 [CrossRef]
    [Google Scholar]
  43. Wang E. T., van Berkum P., Sui X. H., Beyene D., Chen W. X., Martínez-Romero E. 1999; Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soil and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65 [CrossRef]
    [Google Scholar]
  44. Wang F. Q., Wang E. T., Zhang Y. F., Chen W. X. 2006; Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. Syst Appl Microbiol 29:502–517 [CrossRef]
    [Google Scholar]
  45. Wei G. H., Wang E. T., Tan Z. Y., Zhu M. E., Chen W. X. 2002; Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea . Int J Syst Evol Microbiol 52:2231–2239 [CrossRef]
    [Google Scholar]
  46. Wei G. H., Tan Z. Y., Zhu M. E., Wang E. T., Han S. Z., Chen W. X. 2003; Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583 [CrossRef]
    [Google Scholar]
  47. Wernegreen J. J., Riley M. A. 1999; Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113 [CrossRef]
    [Google Scholar]
  48. Wu T. L., Chen P. Y., Wei C. F., Chen T. C., Hu C. C., Cheng H. C., Li L. C. 1988 Flora Republicae Popularis Sinicae . Tomus 39, Angiospermae, Dicotyledoneae, Laguminosae (1) Beijing: Science Press;
    [Google Scholar]
  49. Xu L. M., Ge C., Cui Z., Li J., Fan H. 1995; Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:705–711
    [Google Scholar]
  50. Yao Z. Y., Kan F. L., Wang E. T., Wei G. H., Chen W. X. 2002; Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64363-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64363-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error