1887

Abstract

A marine bacterium, strain Pol012, was isolated from the Mediterranean sponge and subsequently characterized as belonging to subphylum 1 of the phylum ‘’. Strain Pol012 was non-motile, Gram-negative, coccoid or rod-shaped and red in colour. The menaquinones MK-8 and MK-9 were detected. The G+C content of the genomic DNA was 50.9 mol%. Growth was possible at temperatures between 8 and 30 °C and at pH values between 6.8 and 8.2. The closest cultured relative of strain Pol012 was (83 % sequence similarity), while the closest environmental 16S rRNA gene sequence was the marine clone Arctic96BD-2 (95 % sequence similarity). Strain Pol012 is the first marine pure-culture representative of ‘’ subphylum 1 and represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is Pol012 (=DSM 177716=CIP 108984).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64360-0
2006-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2119.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64360-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Olagnon, M., Desbruyères, D., Pagé, A., Barbier, G., Juniper, S. K., Quérellou, J. & Cambon-Bonavita, M.-A. ( 2002; ). Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42, 463–476.[CrossRef]
    [Google Scholar]
  2. Bano, N. & Hollibaugh, J. T. ( 2002; ). Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68, 505–518.[CrossRef]
    [Google Scholar]
  3. Bowman, J. P. & McCuaig, R. D. ( 2003; ). Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69, 2463–2483.[CrossRef]
    [Google Scholar]
  4. Bowman, J. P. & Nowak, B. ( 2004; ). Salmonid gill bacteria and their relationship to amoebic gill disease. J Fish Dis 27, 483–492.[CrossRef]
    [Google Scholar]
  5. Bowman, J. P., Rea, S. M., McCammon, S. A. & McMeekin, T. A. ( 2000; ). Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica. Environ Microbiol 2, 227–237.[CrossRef]
    [Google Scholar]
  6. Chin, K.-J., Liesack, W. & Janssen, P. H. ( 2001; ). Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int J Syst Evol Microbiol 51, 1965–1968.[CrossRef]
    [Google Scholar]
  7. Cohen-Bazire, G., Sistrom, W. R. & Stanier, R. Y. ( 1957; ). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49, 25–68.[CrossRef]
    [Google Scholar]
  8. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. ( 2004; ). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54, 1469–1476.[CrossRef]
    [Google Scholar]
  9. Fieseler, L., Horn, M., Wagner, M. & Hentschel, U. ( 2004; ). Discovery of the novel candidate phylum ‘Poribacteria’ in marine sponges. Appl Environ Microbiol 70, 3724–3732.[CrossRef]
    [Google Scholar]
  10. Harris, J. K., Kelley, S. T. & Pace, N. R. ( 2004; ). New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70, 845–849.[CrossRef]
    [Google Scholar]
  11. Hedlund, B. P., Gosink, J. J. & Staley, J. T. ( 1996; ). Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int J Syst Bacteriol 46, 960–966.[CrossRef]
    [Google Scholar]
  12. Hedlund, B. P., Gosink, J. J. & Staley, J. T. ( 1997; ). Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72, 29–38.[CrossRef]
    [Google Scholar]
  13. Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C. & Hacker, J. ( 2001; ). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the mediterranean sponges Aplysina aerophoba and A. cavernicola. FEMS Microbiol Ecol 35, 305–312.[CrossRef]
    [Google Scholar]
  14. Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M. & Moore, B. S. ( 2002; ). Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68, 4431–4440.[CrossRef]
    [Google Scholar]
  15. Hentschel, U., Usher, K. M. & Taylor, M. W. ( 2006; ). Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55, 167–177.[CrossRef]
    [Google Scholar]
  16. Hill, R. T. ( 2004; ). Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In Microbial Diversity and Bioprospecting, pp. 177–190. Edited by A. T. Bull. Washington, DC: American Society for Microbiology.
  17. Huber, T., Faulkner, G. & Hugenholtz, P. ( 2004; ). Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319.[CrossRef]
    [Google Scholar]
  18. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765–4774.
    [Google Scholar]
  19. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. & Janssen, P. H. ( 2003; ). Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69, 2391–2396.
    [Google Scholar]
  20. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  21. Lyman, J. & Fleming, R. H. ( 1940; ). Composition of seawater. J Mar Res 3, 134–146.
    [Google Scholar]
  22. Madrid, V. M., Taylor, G. T., Scranton, M. I. & Christoserdov, A. Y. ( 2001; ). Phylogenetic diversity of bacterial and archeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67, 1663–1674.[CrossRef]
    [Google Scholar]
  23. Mincer, T. J., Jensen, P. R., Kauffman, C. A. & Fenical, W. ( 2002; ). Widespread and persistent populations of a major new actinomycete taxon in ocean sediments. Appl Environ Microbiol 68, 5005–5011.[CrossRef]
    [Google Scholar]
  24. Montalvo, N. F., Mohamed, N. M., Enticknap, J. J. & Hill, R. T. ( 2005; ). Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87, 29–36.[CrossRef]
    [Google Scholar]
  25. Oppenheimer, C. H. & ZoBell, C. E. ( 1952; ). The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11, 10–18.
    [Google Scholar]
  26. O'Sullivan, L. A., Fuller, K. E., Thomas, E. M., Turley, C. M., Fry, J. C. & Weightman, A. J. ( 2004; ). Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol Ecol 47, 359–370.[CrossRef]
    [Google Scholar]
  27. Petroni, G., Spring, S., Schleifer, K.-H., Verni, F. & Rosati, G. ( 2000; ). Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci U S A 97, 1813–1817.[CrossRef]
    [Google Scholar]
  28. Pimentel-Elardo, S., Wehrl, M., Friedrich, A. B., Jensen, P. J. & Hentschel, U. ( 2003; ). Isolation of planctomycetes from Aplysina sponges. Aquat Microb Ecol 33, 239–245.[CrossRef]
    [Google Scholar]
  29. Powell, S. M., Bowman, J. P., Snape, I. & Stark, J. S. ( 2003; ). Microbial community variation in pristine and polluted coastal Antarctic sediments. FEMS Microbiol Ecol 45, 135–145.[CrossRef]
    [Google Scholar]
  30. Sakai, T., Ishizuka, K. & Kato, I. ( 2003; ). Isolation and characterization of a fucoidan-degrading marine bacterium. Mar Biotechnol 5, 409–416.[CrossRef]
    [Google Scholar]
  31. Sangwan, P., Chen, X., Hugenholtz, P. & Janssen, P. H. ( 2004; ). Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl Environ Microbiol 70, 5875–5881.[CrossRef]
    [Google Scholar]
  32. Schäfer, H., Servais, P. & Muyzer, G. ( 2000; ). Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch Microbiol 173, 138–145.[CrossRef]
    [Google Scholar]
  33. Scheuermayer, M., Pimentel-Elardo, S., Fieseler, L., Grozdanov, L. & Hentschel, U. ( 2006; ). Microorganisms of sponges: phylogenetic diversity and biotechnological potential. In Frontiers in Marine Biotechnology, pp. 289–312. Edited by P. Proksch & W. E. G. Müller. Norwich: Horizon Bioscience.
  34. Schlesner, H. ( 1987; ). Verrucomicrobium spinosum gen. nov., sp. nov., a fimbriated prosthecate bacterium. Syst Appl Microbiol 10, 54–56.[CrossRef]
    [Google Scholar]
  35. Shieh, W. Y. & Jean, W. D. ( 1998; ). Alterococcus agarolyticus, gen. nov., sp. nov., a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44, 637–645.[CrossRef]
    [Google Scholar]
  36. Sittig, M. & Schlesner, H. ( 1993; ). Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 16, 92–103.[CrossRef]
    [Google Scholar]
  37. Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M. & Breznak, J. A. ( 2004; ). New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70, 4748–4755.[CrossRef]
    [Google Scholar]
  38. Strunk, O., Gross, O., Reichel, B. & 10 other authors ( 2000; ). arb: a software environment for sequence data (http://www.mikro.biologie.tu-muenchen.de). Department of Microbiology, Technische Universität Munich, Germany.
  39. Suzuki, M. T., Béjà, O., Taylor, L. T. & DeLong, E. F. ( 2001; ). Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol 3, 323–331.[CrossRef]
    [Google Scholar]
  40. Vandekerckhove, T. T. M., Willems, A., Gillis, M. & Coomans, A. ( 2000; ). Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol 50, 2197–2205.[CrossRef]
    [Google Scholar]
  41. Weidner, S., Arnold, W., Stackebrandt, E. & Pühler, A. ( 2000; ). Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb Ecol 39, 22–31.[CrossRef]
    [Google Scholar]
  42. Zoetendal, E. G., Plugge, C. M., Akkermans, A. D. L. & de Vos, W. M. ( 2003; ). Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53, 211–215.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64360-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64360-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error