1887

Abstract

Mesophilic (=6) and psychrotolerant -like isolates from various seafoods (=13), as well as clinical isolates (=3), were characterized by using a polyphasic approach including multi-locus sequencing. Based on the phylogenetic analysis, the 22 strains were divided into two distinct groups comprising mesophilic and psychrotolerant isolates, respectively. This classification was supported by DNA–DNA hybridization studies, whereby a psychrotolerant isolate (strain U2/3) showed 41.0 and 17.8 % relatedness to the type strains of the mesophilic species subsp. (strain LMG 7874) and subsp. (strain DSM 14850), respectively. Analysis of the 16S rRNA gene sequences showed a similarity of 98.6 % between mesophilic and psychrotolerant isolates. However, fragments of seven protein-encoding housekeeping genes (, , , , , and ) all showed less than 90.9 % sequence similarity between the two groups. The psychrotolerant isolates grew at 0–2 °C and also differed from the mesophilic isolates with respect to growth at 37 °C and in 8.5 % (w/v) NaCl and fermentation of -galactose. The psychrotolerant strains appear to represent a novel species, for which the name sp. nov. is proposed. The type strain is U2/3 (=LMG 23374=DSM 17886).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64357-0
2006-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2473.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64357-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 1999 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. New York: Cambridge University Press;
    [Google Scholar]
  2. Basby M., Jeppesen V. F., Huss H. H. 1998; Characterization of the microflora of lightly salted lumpfish ( Cyclopterus lumpus ) roe stored at 5 °C. J Aquat Food Prod Technol 7:35–51 [CrossRef]
    [Google Scholar]
  3. Brenner D. J., Farmer J. J. III, Fanning G. R., Steigerwalt A. G., Klykken P., Wathen H. G., Hickman F. W., Ewing W. H. 1978; Deoxyribonucleic acid relatedness of Proteus and Providencia species. Int J Syst Bacteriol 28:269–282 [CrossRef]
    [Google Scholar]
  4. Cilia V., Lafay B., Christen R. 1996; Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13:451–461 [CrossRef]
    [Google Scholar]
  5. Clinical and Laboratory Standards Institute 2005 Performance standards for antimicrobial susceptibility testing . Fifteenth International Supplement, document M100-MS14 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  6. Dalgaard P., Ross T., Kamperman L., Neumeyer K., McMeekin T. A. 1994; Estimation of bacterial growth rates from turbidimetric and viable count data. Int J Food Microbiol 23:391–404 [CrossRef]
    [Google Scholar]
  7. Dalgaard P., Madsen H. L., Samieian N., Emborg J. 2006; Biogenic amines formation and microbial spoilage in chilled garfish ( Belone belone belone ) – effect of modified atmosphere packaging and previous frozen storage. J Appl Microbiol 101:80–95 [CrossRef]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Emborg J., Dalgaard P. 2006; Formation of histamine and biogenic amines in cold-smoked tuna: an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. J Food Prot 69:897–906
    [Google Scholar]
  10. Emborg J., Laursen B. G., Dalgaard P. 2005; Significant histamine formation in tuna ( Thunnus albacares ) at 2 °C – effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria. Int J Food Microbiol 101:263–279 [CrossRef]
    [Google Scholar]
  11. Enright M. C., Spratt B. G. 1999; Multilocus sequence typing. Trends Microbiol 7:482–487 [CrossRef]
    [Google Scholar]
  12. Fletcher G. C., Summers G., van Veghel P. W. C. 1998; Levels of histamine and histamine-producing bacteria in smoked fish from New Zealand markets. J Food Prot 61:1064–1070
    [Google Scholar]
  13. Fulton M. 1943; The identity of Bacterium columbensis Castellani. J Bacteriol 46:79–82
    [Google Scholar]
  14. Gascuel O. 1997; bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  15. Giraffa G. 2001; Protein coding gene sequences: alternative phylogenetic markers or possible tools to compare ecological diversity in bacteria?. Curr Genomics 2:243–251 [CrossRef]
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Janda J. M., Abbott S. L. 2005; Genus XXl. Morganella Fulton 1943, 81AL . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 part B pp  707–709 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  18. Jensen K. T., Frederiksen W., Hickman-Brenner F. W., Steigerwalt A. G., Riddle C. F., Brenner D. J. 1992 Recognition of Morganella subspecies, with proposal of Morganella morganii subsp.morganii subsp. nov. and Morganellamorganii subsp. sibonii subsp. nov. Int J Syst Bacteriol 42, 613–620 [CrossRef]
  19. Kimata M., Kawai A. 1953; A new species of bacterium which produces large amounts of histamine on fish meats, found in spoiled fresh fish. Mem Res Inst Food Sci 6:1–2
    [Google Scholar]
  20. Kimata M., Kawai A., Akamatsu M. 1958; Classification and identification of the bacteria having an activity which can produce a large amount of histamine. Mem Res Inst Food Sci 14:33–41
    [Google Scholar]
  21. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  22. L'Abee-Lund T. M., Heiene R., Friis N. F., Ahrens P., Sorum H. 2003; Mycoplasma canis and urogenital disease in dogs in Norway. Vet Rec 153:231–235 [CrossRef]
    [Google Scholar]
  23. Lehane L., Olley J. 2000; Histamine fish poisoning revisited. Int J Food Microbiol 58:1–37 [CrossRef]
    [Google Scholar]
  24. Muller H. E. 1985; Production of brownish pigment by bacteria of the Morganella-Proteus-Providencia group. Zentralbl Bakteriol Mikrobiol Hyg [A] 260:428–435
    [Google Scholar]
  25. National Committee on Clinical Laboratory Standards 2002 Performance standards for antimicrobial disk and dilution susceptibility test for bacteria isolated from animals; approved standard , 2nd edn, document M31–MA2. Wayne, PA: National Committee on Clinical Laboratory Standards;
    [Google Scholar]
  26. National Committee on Clinical Laboratory Standards 2003 Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, approved standard , 6th edn, document M7-A6. Wayne, PA: National Committee on Clinical Laboratory Standards;
    [Google Scholar]
  27. Sheth N. K., Kurup V. P. 1975; Evaluation of tyrosine medium for the identification of Enterobacteriaceae . J Clin Microbiol 1:483–485
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  30. Takahashi H., Kimura B., Yoshikawa M., Fujii T. 2003; Cloning and sequencing of the histidine decarboxylase genes of Gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish. Appl Environ Microbiol 69:2568–2579 [CrossRef]
    [Google Scholar]
  31. Torpdahl M., Skov M. N., Sandvang D., Baggesen D. L. 2005; Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. J Microbiol Methods 63:173–184 [CrossRef]
    [Google Scholar]
  32. van Spreekens K. J. A. 1974; The suitability of a modification of Long and Hammer's medium for the enumeration of more fastidious bacteria from fresh fishery products. Arch Lebensmittelhyg 25:213–219
    [Google Scholar]
  33. Vasyurenko Z. P., Chernyavskaya Ye. N. 1990; Confirmation of Morganella distinction from Proteus and Providencia among Enterobacteriaceae on the basis of cellular and lipopolysaccharide fatty acid composition. J Hyg Epidemiol Microbiol Immunol 34:81–90
    [Google Scholar]
  34. Wauters G., Avesani V., Charlier J., Janssens M., Delmee M. 2004; Histidine decarboxylase in Enterobacteriaceae revisited. J Clin Microbiol 42:5923–5924 [CrossRef]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  36. Winslow C.-E. A., Kliger I. J., Rothberg W. 1919; Studies on the classification of the colon-typhoid group of bacteria with special reference to their fermentative reactions. J Bacteriol 4:429–503
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64357-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64357-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error