1887

Abstract

A Gram-negative, non-motile, filamentous, rod-shaped, non-spore-forming bacterium (strain F2) was isolated from the surface of an electricity-harvesting electrode incubated in marine sediments. Strain F2 does not contain -type cytochromes, flexirubin or carotenoids. It is a facultative anaerobe that can ferment sugars by using a mixed acid fermentation pathway and it can grow over a wide range of temperatures (4–42 °C). The DNA G+C (44.9 mol%) content and chemotaxonomic characteristics (major fatty acids, a-15 : 0 and 15 : 0) were consistent with those of species within the phylum . Phylogenetic analysis of the 16S rRNA nucleotide and elongation factor G amino acid sequences indicated that strain F2 represents a unique phylogenetic cluster within the phylum . On the basis of 16S rRNA gene sequence phylogeny, the closest relative available in pure culture, , is only 87.5 % similar to strain F2. Results from physiological, biochemical and phylogenetic analyses showed that strain F2 should be classified as a novel genus and species within the phylum , for which the name gen. nov., sp. nov. is proposed. The type strain is F2 (=ATCC BAA-1284=JCM 13498).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64296-0
2007-04-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/701.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64296-0&mimeType=html&fmt=ahah

References

  1. Achenbach, L. & Woese, C. ( 1995; ). 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual, pp. 201–203. Edited by F. T. Robb, A. R. Place, K. R. Sowers, H. J. Schreier, S. DasSarma & E. M. Fleischmann. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  4. Berchet, V., Thomas, T., Cavicchioli, R., Russell, N. J. & Gounot, A. M. ( 2000; ). Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4, 123–130.[CrossRef]
    [Google Scholar]
  5. Bond, D. R. & Lovley, D. R. ( 2003; ). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69, 1548–1555.[CrossRef]
    [Google Scholar]
  6. Bond, D. R. & Lovley, D. R. ( 2005; ). Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71, 2186–2189.[CrossRef]
    [Google Scholar]
  7. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. ( 2002; ). Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485.[CrossRef]
    [Google Scholar]
  8. Brown, M. V. & Bowman, J. P. ( 2001; ). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35, 267–275.[CrossRef]
    [Google Scholar]
  9. Cashion, P., Holder-Franklin, M., McCully, J. & Franklin, M. ( 1997; ). A rapid method for the base determination of bacterial DNA. Anal Biochem 81, 461–466.
    [Google Scholar]
  10. Chaudhuri, S. K. & Lovley, D. R. ( 2003; ). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21, 1229–1232.[CrossRef]
    [Google Scholar]
  11. Coates, J. D., Lonergan, D. J., Philips, E. J., Jenter, H. & Lovley, D. R. ( 1995; ). Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164, 406–413.[CrossRef]
    [Google Scholar]
  12. Denger, K. & Schink, B. ( 1995; ). New halo- and thermotolerant fermenting bacteria producing surface-active compounds. Appl Environ Microbiol 52, 173–178.
    [Google Scholar]
  13. Denger, K., Warthmann, R., Ludwig, W. & Schink, B. ( 2002; ). Anaerophaga thermohalophila gen. nov., sp. nov. a moderately thermophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52, 173–178.
    [Google Scholar]
  14. Dunkelblum, E., Tan, S. H. & Silk, P. J. ( 1985; ). Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11, 265–277.[CrossRef]
    [Google Scholar]
  15. Hayes, L. A. & Lovley, D. R. ( 2002; ). Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Microb Ecol 43, 134–145.[CrossRef]
    [Google Scholar]
  16. Hayes, L. M., Nevin, K. P. & Lovley, D. R. ( 1999; ). Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30, 937–945.[CrossRef]
    [Google Scholar]
  17. Holmes, D. E., Bond, D. R. & Lovley, D. R. ( 2004a; ). Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70, 1234–1237.[CrossRef]
    [Google Scholar]
  18. Holmes, D. E., Bond, D. R., O'Neil, R. A., Reimers, C. E., Tender, L. R. & Lovley, D. R. ( 2004b; ). Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48, 178–190.[CrossRef]
    [Google Scholar]
  19. Holmes, D. E., Nevin, K. P. & Lovley, D. R. ( 2004c; ). Comparison of 16S rRNA, nifD, recA, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54, 1591–1599.[CrossRef]
    [Google Scholar]
  20. Holmes, D. E., Nicoll, J. S., Bond, D. R. & Lovley, D. R. ( 2004d; ). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70, 6023–6030.[CrossRef]
    [Google Scholar]
  21. Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J. & Phung, N. T. ( 2004; ). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63, 672–681.[CrossRef]
    [Google Scholar]
  22. Knight, V. K., Kerkhof, L. J. & Häggblom, M. M. ( 1999; ). Community analyses of sulfidogenic 2-bromophenol-dehalogenating and phenol-degrading microbial consortia. FEMS Microbiol Ecol 29, 137–147.[CrossRef]
    [Google Scholar]
  23. Lane, D. L. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  24. Lane, D. L., Pace, B., Olsen, G. J., Stahl, D., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  25. Lee, J. Y., Phung, N. T., Chang, I. S., Kim, B. H. & Sung, H. C. ( 2003; ). Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223, 185–191.[CrossRef]
    [Google Scholar]
  26. Li, L., Kato, C. & Horikoshi, K. ( 1999; ). Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1, 391–400.[CrossRef]
    [Google Scholar]
  27. Margesin, R., Sproer, C., Schumann, P. & Schinner, F. ( 2003; ). Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53, 1291–1296.[CrossRef]
    [Google Scholar]
  28. McGroddy, S. E. & Farrington, J. W. ( 1995; ). Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts. Environ Sci Technol 29, 1542–1550.[CrossRef]
    [Google Scholar]
  29. McGroddy, S. E., Farrington, J. W. & Gschwend, P. M. ( 1996; ). Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ Sci Technol 30, 172–177.[CrossRef]
    [Google Scholar]
  30. Nevin, K. P., Holmes, D. E., Woodard, T. L., Hinlein, E. S., Ostendorf, D. W. & Lovley, D. R. ( 2005; ). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55, 1667–1674.[CrossRef]
    [Google Scholar]
  31. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K. & Chang, H. I. ( 2001; ). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7, 297–306.[CrossRef]
    [Google Scholar]
  32. Pearson, W. R. ( 1990; ). Rapid and sensitive sequence comparisons with fastp and fasta. Methods Enzymol 183, 63–98.
    [Google Scholar]
  33. Pham, C. A., Jung, S. J., Phung, N. T., Lee, J., Chang, I. S., Kim, B. H., Yi, H. & Chun, J. ( 2003; ). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223, 129–134.[CrossRef]
    [Google Scholar]
  34. Phung, N. J., Lee, J., Kang, K. H., Chang, I. S., Gadd, G. M. & Kim, B. H. ( 2004; ). Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233, 77–82.[CrossRef]
    [Google Scholar]
  35. Pinkart, H. C., Ringelberg, D. B., Piceno, Y. M., Macnaughton, S. J. & White, D. C. ( 2002; ). Manual of Environmental Microbiology, 2nd edn. Washington, DC: American Society for Microbiology.
  36. Ravenschlag, K., Sahm, K., Pernthaler, J. & Amann, R. ( 1999; ). High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65, 3982–3989.
    [Google Scholar]
  37. Reichenbach, H. ( 1992; ). The Order Cytophagales. In The Prokaryotes, pp. 3631–3675. Edited by A. Balows, H. G. Truper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  38. Reichenbach, H., Kleinig, H. & Achenbach, H. ( 1974; ). The pigments of Flexibacter elegans. Novel and chemosystematically useful compounds. Arch Microbiol 101, 131–134.[CrossRef]
    [Google Scholar]
  39. Reimers, C. E., Tender, L. M., Fertig, S. & Wang, W. ( 2001; ). Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35, 192–195.[CrossRef]
    [Google Scholar]
  40. Rothermich, M. M., Hayes, L. A. & Lovley, D. R. ( 2002; ). Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36, 4811–4817.[CrossRef]
    [Google Scholar]
  41. Rudnick, S. M. & Chen, R. F. ( 1998; ). Laser-induced fluorescence of pyrene and other polycyclic aromatic hydrocarbons (PAH) in seawater. Talanta 47, 907–919.[CrossRef]
    [Google Scholar]
  42. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 1999; ). Phylogenetic analysis of genus Marinilabilia and related bacteria based on the amino acid sequences of gyrB and emended description of Marinilabilia salmonicolor with Marinilabilia agarovorans as its subjective synonym. Int J Syst Bacteriol 49, 1551–1557.[CrossRef]
    [Google Scholar]
  43. Swofford, D. L. ( 1998).; paup*: Phylogenetic analysis using parsimony (* and other methods), version 4. Sunderland, MA: Sinauer Associates.
  44. Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J. & Lovley, D. R. ( 2002; ). Harnessing microbially generated power on the seafloor. Nat Biotechnol 20, 821–825.[CrossRef]
    [Google Scholar]
  45. Wang, X. C., Zhang, Y. X. & Chen, R. F. ( 2001; ). Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Mar Pollut Bull 42, 1139–1149.[CrossRef]
    [Google Scholar]
  46. Zhilina, T. N., Appel, R., Probian, C., Brossa, E. L., Harder, J., Widdel, F. & Zavarzin, G. A. ( 2004; ). Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182, 244–253.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64296-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64296-0
Loading

Data & Media loading...

vol. , part 4, pp. 701 - 707

Tables detailing the PFLA content of strain F2 and 16S rRNA gene sequence similarities between strain F2 and related species of the phylum . [PDF](64 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error