1887

Abstract

A Gram-negative, non-motile, filamentous, rod-shaped, non-spore-forming bacterium (strain F2) was isolated from the surface of an electricity-harvesting electrode incubated in marine sediments. Strain F2 does not contain -type cytochromes, flexirubin or carotenoids. It is a facultative anaerobe that can ferment sugars by using a mixed acid fermentation pathway and it can grow over a wide range of temperatures (4–42 °C). The DNA G+C (44.9 mol%) content and chemotaxonomic characteristics (major fatty acids, a-15 : 0 and 15 : 0) were consistent with those of species within the phylum . Phylogenetic analysis of the 16S rRNA nucleotide and elongation factor G amino acid sequences indicated that strain F2 represents a unique phylogenetic cluster within the phylum . On the basis of 16S rRNA gene sequence phylogeny, the closest relative available in pure culture, , is only 87.5 % similar to strain F2. Results from physiological, biochemical and phylogenetic analyses showed that strain F2 should be classified as a novel genus and species within the phylum , for which the name gen. nov., sp. nov. is proposed. The type strain is F2 (=ATCC BAA-1284=JCM 13498).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64296-0
2007-04-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/701.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64296-0&mimeType=html&fmt=ahah

References

  1. Achenbach L., Woese C. 1995; 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual pp  201–203 Edited by Robb F. T., Place A. R., Sowers K. R., Schreier H. J., DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  4. Berchet V., Thomas T., Cavicchioli R., Russell N. J., Gounot A. M. 2000; Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4:123–130 [CrossRef]
    [Google Scholar]
  5. Bond D. R., Lovley D. R. 2003; Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555 [CrossRef]
    [Google Scholar]
  6. Bond D. R., Lovley D. R. 2005; Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans . Appl Environ Microbiol 71:2186–2189 [CrossRef]
    [Google Scholar]
  7. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485 [CrossRef]
    [Google Scholar]
  8. Brown M. V., Bowman J. P. 2001; A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275 [CrossRef]
    [Google Scholar]
  9. Cashion P., Holder-Franklin M., McCully J., Franklin M. 1997; A rapid method for the base determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  10. Chaudhuri S. K., Lovley D. R. 2003; Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232 [CrossRef]
    [Google Scholar]
  11. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413 [CrossRef]
    [Google Scholar]
  12. Denger K., Schink B. 1995; New halo- and thermotolerant fermenting bacteria producing surface-active compounds. Appl Environ Microbiol 52:173–178
    [Google Scholar]
  13. Denger K., Warthmann R., Ludwig W., Schink B. 2002; Anaerophaga thermohalophila gen. nov., sp. nov. a moderately thermophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178
    [Google Scholar]
  14. Dunkelblum E., Tan S. H., Silk P. J. 1985; Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera . J Chem Ecol 11:265–277 [CrossRef]
    [Google Scholar]
  15. Hayes L. A., Lovley D. R. 2002; Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Microb Ecol 43:134–145 [CrossRef]
    [Google Scholar]
  16. Hayes L. M., Nevin K. P., Lovley D. R. 1999; Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30:937–945 [CrossRef]
    [Google Scholar]
  17. Holmes D. E., Bond D. R., Lovley D. R. 2004a; Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70:1234–1237 [CrossRef]
    [Google Scholar]
  18. Holmes D. E., Bond D. R., O'Neil R. A., Reimers C. E., Tender L. R., Lovley D. R. 2004b; Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190 [CrossRef]
    [Google Scholar]
  19. Holmes D. E., Nevin K. P., Lovley D. R. 2004c; Comparison of 16S rRNA, nifD , recA , rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599 [CrossRef]
    [Google Scholar]
  20. Holmes D. E., Nicoll J. S., Bond D. R., Lovley D. R. 2004d; Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 706023–6030 [CrossRef]
    [Google Scholar]
  21. Kim B. H., Park H. S., Kim H. J., Kim G. T., Chang I. S., Lee J., Phung N. T. 2004; Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681 [CrossRef]
    [Google Scholar]
  22. Knight V. K., Kerkhof L. J., Häggblom M. M. 1999; Community analyses of sulfidogenic 2-bromophenol-dehalogenating and phenol-degrading microbial consortia. FEMS Microbiol Ecol 29:137–147 [CrossRef]
    [Google Scholar]
  23. Lane D. L. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  24. Lane D. L., Pace B., Olsen G. J., Stahl D., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci U S A 82:6955–6959 [CrossRef]
    [Google Scholar]
  25. Lee J. Y., Phung N. T., Chang I. S., Kim B. H., Sung H. C. 2003; Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223:185–191 [CrossRef]
    [Google Scholar]
  26. Li L., Kato C., Horikoshi K. 1999; Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400 [CrossRef]
    [Google Scholar]
  27. Margesin R., Sproer C., Schumann P., Schinner F. 2003; Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296 [CrossRef]
    [Google Scholar]
  28. McGroddy S. E., Farrington J. W. 1995; Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts. Environ Sci Technol 29:1542–1550 [CrossRef]
    [Google Scholar]
  29. McGroddy S. E., Farrington J. W., Gschwend P. M. 1996; Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ Sci Technol 30:172–177 [CrossRef]
    [Google Scholar]
  30. Nevin K. P., Holmes D. E., Woodard T. L., Hinlein E. S., Ostendorf D. W., Lovley D. R. 2005; Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674 [CrossRef]
    [Google Scholar]
  31. Park H. S., Kim B. H., Kim H. S., Kim H. J., Kim G. T., Kim M., Chang I. S., Park Y. K., Chang H. I. 2001; A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306 [CrossRef]
    [Google Scholar]
  32. Pearson W. R. 1990; Rapid and sensitive sequence comparisons with fastp and fasta. Methods Enzymol 183:63–98
    [Google Scholar]
  33. Pham C. A., Jung S. J., Phung N. T., Lee J., Chang I. S., Kim B. H., Yi H., Chun J. 2003; A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila , isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134 [CrossRef]
    [Google Scholar]
  34. Phung N. J., Lee J., Kang K. H., Chang I. S., Gadd G. M., Kim B. H. 2004; Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82 [CrossRef]
    [Google Scholar]
  35. Pinkart H. C., Ringelberg D. B., Piceno Y. M., Macnaughton S. J., White D. C. 2002 Manual of Environmental Microbiology , 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Ravenschlag K., Sahm K., Pernthaler J., Amann R. 1999; High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989
    [Google Scholar]
  37. Reichenbach H. 1992; The Order Cytophagales . In The Prokaryotes pp  3631–3675 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  38. Reichenbach H., Kleinig H., Achenbach H. 1974; The pigments of Flexibacter elegans . Novel and chemosystematically useful compounds. Arch Microbiol 101:131–134 [CrossRef]
    [Google Scholar]
  39. Reimers C. E., Tender L. M., Fertig S., Wang W. 2001; Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195 [CrossRef]
    [Google Scholar]
  40. Rothermich M. M., Hayes L. A., Lovley D. R. 2002; Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36:4811–4817 [CrossRef]
    [Google Scholar]
  41. Rudnick S. M., Chen R. F. 1998; Laser-induced fluorescence of pyrene and other polycyclic aromatic hydrocarbons (PAH) in seawater. Talanta 47:907–919 [CrossRef]
    [Google Scholar]
  42. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 1999; Phylogenetic analysis of genus Marinilabilia and related bacteria based on the amino acid sequences of gyrB and emended description of Marinilabilia salmonicolor with Marinilabilia agarovorans as its subjective synonym. Int J Syst Bacteriol 49:1551–1557 [CrossRef]
    [Google Scholar]
  43. Swofford D. L. 1998 paup*: Phylogenetic analysis using parsimony (* and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  44. Tender L. M., Reimers C. E., Stecher H. A., Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R. 2002; Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825 [CrossRef]
    [Google Scholar]
  45. Wang X. C., Zhang Y. X., Chen R. F. 2001; Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Mar Pollut Bull 42:1139–1149 [CrossRef]
    [Google Scholar]
  46. Zhilina T. N., Appel R., Probian C., Brossa E. L., Harder J., Widdel F., Zavarzin G. A. 2004; Alkaliflexus imshenetskii gen. nov. sp. nov. a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64296-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64296-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error