1887

Abstract

We investigated the diversity of a collection of 76 strains, isolated from at least 27 species of nematodes and collected in 32 countries, using three complementary approaches: 16S rRNA gene sequencing, molecular typing and phenotypic characterization. The 16S rRNA gene sequences of the strains were highly conserved (similarity coefficient >95 %), suggesting that the common ancestor of the genus probably emerged between 250 and 500 million years ago. Based on comparisons of the 16S rRNA gene sequences, we identified 13 groups and seven unique sequences. This classification was confirmed by analysis of molecular typing profiles of the strains, leading to the classification of new isolates into the species described previously and the description of ten novel species: sp. nov. (type strain USTX62=CIP 109066=DSM 17905), sp. nov. (type strain FRM16=CIP 109074=DSM 17909), sp. nov. (type strain ID10=CIP 109073=DSM 17911), sp. nov. (type strain KE01=CIP 109072=DSM 17903), sp. nov. (type strain USNJ01=CIP 109199=DSM 18168), sp. nov. (type strain SaV=CIP 109068=DSM 17907), sp. nov. (type strain VC01=CIP 109075=DSM 17908), sp. nov. (type strain Q1=CIP 109069=DSM 17902), sp. nov. (type strain PR06-A=CIP 109070=DSM 17910) and sp. nov. (type strain TH01=CIP 109067=DSM 17904). The strains studied here had very similar phenotypic patterns, but phenotypic features nonetheless differentiated the following species: , , , , , and . Based on phenotypic analysis, we identified two major groups of strains. Phenotypic group G comprised strains able to grow at temperatures of 35–42 °C, whereas phenotypic group G comprised strains that grew at temperatures below 35 °C, suggesting that some species may be adapted to tropical or temperate regions and/or influenced by the growth and development temperature of their nematode host.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64287-0
2006-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2805.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64287-0&mimeType=html&fmt=ahah

References

  1. Akhurst R. J. 1980; Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis . J Gen Microbiol 121:303–309
    [Google Scholar]
  2. Akhurst R. J. 1983; Taxonomic study of Xenorhabdus , a genus of bacteria symbiotically associated with insect pathogenic nematodes. Int J Syst Bacteriol 33:38–45 [CrossRef]
    [Google Scholar]
  3. Akhurst R. J. 1986; Xenorhabdus nematophilus subsp. beddingii ( Enterobacteriaceae ): a new subspecies of bacteria mutualistically associated with entomopathogenic nematodes. Int J Syst Bacteriol 36:454–457 [CrossRef]
    [Google Scholar]
  4. Akhurst R. J., Boemare N. E. 1988; A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J Gen Microbiol 134:1835–1845
    [Google Scholar]
  5. Akhurst R. J., Boemare N. E. 2005; Genus XL. Xenorhabdus Thomas and Poinar 1979, 354AL emend. Thomas and Poinar 1983, 878. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 part B pp  831–838 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  6. Akhurst R. J., Mourant R. G., Baud L., Boemare N. E. 1996; Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus ( Enterobacteriaceae ). Int J Syst Bacteriol 46:1034–1041 [CrossRef]
    [Google Scholar]
  7. Akhurst R. J., Boemare N. E., Janssen P. H., Peel M. M., Alfredson D. A., Beard C. E. 2004; Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp.asymbiotica subsp. nov. and P.asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 54:1301–1310 [CrossRef]
    [Google Scholar]
  8. Boemare N. E., Akhurst R. J. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761
    [Google Scholar]
  9. Boemare N. E., Akhurst R. J., Mourant R. G. 1993; DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255 [CrossRef]
    [Google Scholar]
  10. Brunel B., Givaudan A., Lanois A., Akhurst R. J., Boemare N. 1997; Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 63:574–580
    [Google Scholar]
  11. Cabanillas H. E., Poinar G. O. Jr, Raulston J. R. 1994; Steinernema riobravis sp. nov. (Rhabditida: Steinernematidae; from Texas. Fundam Appl Nematol 17:123–131
    [Google Scholar]
  12. Doucet M. M. A. 1986; A new species of Neoaplectana Steiner, 1929 (Nematoda: Steinernematidae) from Cordoba, Argentina. Rev Nematol 9:317–323
    [Google Scholar]
  13. Dutky S. R., Hough W. S. 1955; Note on a parasitic nematode from codling moth larvae, Carpocapsa pomonella . Proc Entomol Soc Wash 57:244
    [Google Scholar]
  14. Elawad S., Ahmad W., Reid A. P. 1997; Steinernema abbasi sp. n (Nematoda: Steinernematidae from the Sultanate of Oman. Fundam Appl Nematol 20:435–442
    [Google Scholar]
  15. Fischer-Le Saux M., Mauléon H., Constant P., Brunel B., Boemare N. 1998; PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Appl Environ Microbiol 64:4246–4254
    [Google Scholar]
  16. Fischer-Le Saux M., Arteaga-Hernández E., Mráček Z., Boemare N. E. 1999a; The bacterial symbiont Xenorhabdus poinarii (Enterobacteriaceae) is harbored by two phylogenetic related host nematodes: the entomopathogenic species Steinernema cubanum and Steinernema glaseri (Nematoda: Steinernematidae). FEMS Microbiol Ecol 29:149–157 [CrossRef]
    [Google Scholar]
  17. Fischer-Le Saux M., Viallard V., Brunel B., Normand P., Boemare N. E. 1999b; Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P.luminescens subsp. luminescens subsp.nov., P. luminescens subsp. akhurstii subsp. nov.,P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp.nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656 [CrossRef]
    [Google Scholar]
  18. Gancheva A., Pot B., Vanhonacker K., Hoste B., Kersters K. 1999; A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst Appl Microbiol 22:573–585 [CrossRef]
    [Google Scholar]
  19. Gower J. C., Legendre P. 1986; Metric and Euclidean properties of dissimilarity coefficients. J Classif 3:5–48 [CrossRef]
    [Google Scholar]
  20. Hulton C. S. J., Higgins C. F., Sharp P. M. 1991; ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli , Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834 [CrossRef]
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  22. Kozodoi E. M. 1984; A new entomophagous nematode Neoplectana anomali sp. n. (Rhabditida: Steinernematidae) and its biology. Zool Zh 63:1605–1609
    [Google Scholar]
  23. Lengyel K., Lang E., Fodor A., Szállás E., Schumann P., Stackebrandt E. 2005; Description of four novel species of Xenorhabdus , family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp.nov. Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Syst Appl Microbiol 28:115–122 [CrossRef]
    [Google Scholar]
  24. Lim H., Lee K. H., Hong C.-H., Bahk G.-J., Choi W. S. 2005; Comparison of four molecular typing methods for the differentiation of Salmonella spp. Int J Food Microbiol 105:411–418 [CrossRef]
    [Google Scholar]
  25. Mazurier S., van de Giessen A., Heuvelman K., Wernars K. 1992; RAPD analysis of Campylobacter isolates: DNA fingerprinting without the need to purify DNA. Lett Appl Microbiol 14:260–262 [CrossRef]
    [Google Scholar]
  26. Moran N. A., Munson M. A., Baumann P., Ishikawa H. 1993; A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171 [CrossRef]
    [Google Scholar]
  27. Mráček Z., Sturhan D., Reid A. 2003; Steinernema weiseri n. sp. (Rhabditida, Steinernematidae), a new entomopathogenic nematode from Europe. Syst Parasitol 56:37–47 [CrossRef]
    [Google Scholar]
  28. Nguyen K. B., Duncan L. W. 2002; Steinernema diaprepesi n. sp. (Rhabditida: Steinernematidae), a parasite of the citrus weevil Diaprepes abbreviatus (L) (Coleoptera: Curculionidae). J Nematol 34:159–170
    [Google Scholar]
  29. Nishimura Y., Hagiwara A., Suzuki T., Yamanaka S. 1994; Xenorhabdus japonicus sp. nov. associated with the nematode Steinernema kushidai . World J Microbiol Biotechnol 10:207–210 [CrossRef]
    [Google Scholar]
  30. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86 [CrossRef]
    [Google Scholar]
  31. Poinar G. O. Jr 1966; The presence of Achromobacter nematophilus in the infective stage of a Neoplectana sp. (Steinernematidae: Nematoda). Nematologica 12:105–108 [CrossRef]
    [Google Scholar]
  32. Poinar G. O. Jr 1993; Origins and phylogenetic relationships of the entomophilic rhabditids, Heterorhabditis and Steinernema . Fundam Appl Nematol 16:333–338
    [Google Scholar]
  33. Poinar G. O. Jr, Thomas G. M. 1965; A new bacterium, Achromobacter nematophilus sp. nov. ( Achromobacteriaceae : Eubacteriales ) associated with a nematode. Int Bull Bacteriol Nomencl Taxon 15:249–252
    [Google Scholar]
  34. Qiu L., Fang Y., Zhou Y., Pang Y., Nguyen K. B. 2004; Steinernema guangdongense sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from southern China with a note on S. serratum ( nomen nudum ). Zootaxa 704:1–20
    [Google Scholar]
  35. Román J., Figueroa W. 1994; Steinernema puertoricensis n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Puerto Rico. J Agric Univ Puerto Rico 78:167–175
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  37. Saunders J. E., Webster J. M. 1999; Temperature effects on Heterorhabditis megidis and Steinernema carpocapsae infectivity to Galleria mellonella . J Nematol 31:299–304
    [Google Scholar]
  38. Sicard M., Ferdy J. B., Pagès S., Le Brun B., Godelle B., Boemare N., Moulia C. 2004; When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). J Evol Biol 17:985–993 [CrossRef]
    [Google Scholar]
  39. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 22:1409–1438
    [Google Scholar]
  40. Somvanshi V. S., Lang E., Ganguly S., Swiderski J., Saxena A. K., Stackebrandt E. 2006; A novel species of Xenorhabdus , family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst Appl Microbiol 29:519–525 [CrossRef]
    [Google Scholar]
  41. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  42. Stock S. P., Koppenhöfer A. M. 2003; Steinernema scarabaei n. sp. (Rhabditida: Steinernematidae), a natural pathogen of scarab larvae (Coleoptera: Scarabaeidae) from New Jersey. Nematology 5:191–204 [CrossRef]
    [Google Scholar]
  43. Stock S. P., Choo H. Y., Kaya H. K. 1997; An entomopathogenic nematode, Steinernema monticolum sp.n. (Rhabditida: Steinernematidae) from Korea with a key to other species. Nematologica 43:15–29 [CrossRef]
    [Google Scholar]
  44. Stock S. P., Samsook V., Reid A. P. 1998; A new entomopathogenic nematode Steinernema siamkayai sp. n. (Rhabditida: Steinernemtidae) from Thailand. Syst Parasitol 41:105–113 [CrossRef]
    [Google Scholar]
  45. Stock S. P., Griffin C. T., Chaenari R. 2004; Morphological and molecular characterization of Steinernema hermaphroditum n. sp. (Nematoda: Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationship with other closely related taxa. Nematology 6:401–412 [CrossRef]
    [Google Scholar]
  46. Swofford D. L. 2003 paup* – Phylogenetic Analysis Using Parsimony* and other methods, version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  47. Tailliez P., Tremblay J., Ehrlich S. D., Chopin A. 1998; Molecular diversity and relationship within Lactococcus lactis , as revealed by randomly amplified polymorphic DNA (RAPD. Syst Appl Microbiol 21:530–538 [CrossRef]
    [Google Scholar]
  48. Thomas G. M., Poinar G. O. Jr 1979; Xenorhabdus gen. nov., a genus of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae . Int J Syst Bacteriol 29:352–360 [CrossRef]
    [Google Scholar]
  49. Travassos L. 1927; Sobre o genera Oxysomatium . Bol Biol Sao Paulo 5:20–21 (in Portuguese
    [Google Scholar]
  50. Triggiani O., Mráček Z., Reid A. 2004; Steinernema apuliae sp. n. (Rhabditida: Steinernematidae): a new entomopathogenic nematode from southern Italy. Zootaxa 460:1–12
    [Google Scholar]
  51. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  52. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  53. Waturu C. N., Hunt D. J., Reid A. P. 1997; Steinernema karii sp. n (Nematoda: Steinernematidae), a new entomopathogenic nematode from Kenya. Int J Nematol 7:68–75
    [Google Scholar]
  54. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. 1990; DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64287-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64287-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error