1887

Abstract

Seven Gram-positive, coryneform bacteria with virtually identical whole-organism protein patterns were isolated from the surface of smear-ripened cheeses. Representatives of these strains were the subject of a polyphasic study designed to establish their taxonomic status. The organisms formed a distinct branch in the 16S rRNA gene tree and were most closely related to members of the genus , sharing sequence similarities of 95.4–98.7 %. The chemotaxonomic profiles of the strains were consistent with their classification in the genus . The combined genotypic and phenotypic data show that the isolates should be classified in the genus as representatives of a novel species. The name sp. nov. is proposed for this taxon. Isolate R-17892t2 (=DSM 18061=LMG 22410) is the type strain of sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64270-0
2007-01-01
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/92.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64270-0&mimeType=html&fmt=ahah

References

  1. Bockelmann W., Hoppe-Seyler T. 2001; The surface flora of bacterial smear-ripened cheeses from cows' and goats' milk. Int Dairy J 11:307–314 [CrossRef]
    [Google Scholar]
  2. Brennan N. M., Brown R., Goodfellow M., Ward A. C., Beresford T. P., Vancanneyt M., Cogan T. M., Fox P. F. 2001a; Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51:1969–1976 [CrossRef]
    [Google Scholar]
  3. Brennan N. M., Brown R., Goodfellow M., Ward A. C., Beresford T. P., Simpson P. J., Fox P. F., Cogan T. M. 2001b; Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51:843–852 [CrossRef]
    [Google Scholar]
  4. Brennan N. M., Ward A. C., Beresford T. P., Fox P. F., Goodfellow M., Cogan T. M. 2002; Biodiversity of the bacterial flora on the surface of a smear cheese. Appl Environ Microbiol 68:820–830 [CrossRef]
    [Google Scholar]
  5. Carnio M. C., Eppert I., Scherer S. 1999; Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. Int J Food Microbiol 47:89–97 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Kroppenstedt R. M. 1987; Structures of the partially saturated menaquinones of Glycomyces rutgersensis . FEMS Microbiol Lett 44:215–219 [CrossRef]
    [Google Scholar]
  7. Cowan S. T. 1974 Cowan and Steel's Manual for the Identification of Medical Bacteria , 2nd edn. London: Cambridge University Press;
    [Google Scholar]
  8. Eliskases-Lechner F., Ginzinger W. 1995; The bacterial flora of surface-ripened cheese with special regard to coryneforms. Lait 75:571–584 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284 [CrossRef]
    [Google Scholar]
  12. Gevers D., Huys G., Swings J. 2001; Applicability of rep -PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36 [CrossRef]
    [Google Scholar]
  13. Gordon R. E. 1968; The taxonomy of soil bacteria. In The Ecology of Soil Bacteria pp  293–321 Edited by Gray T. R. G., Parkinson D. Liverpool: Liverpool University Press;
    [Google Scholar]
  14. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as nocardiae. J Bacteriol 73:15–27
    [Google Scholar]
  15. Gordon R. E., Mihm J. M. 1962; Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636
    [Google Scholar]
  16. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall.. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  17. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  18. Irlinger F., Bimet F., Delettre J., Lefevre M., Grimont P. A. D. 2005; Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. Int J Syst Evol Microbiol 55:457–462 [CrossRef]
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  21. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  22. Komagata K., Suzuki K. I. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  23. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp  173–179 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  24. Lin Y. C., Uemori K., De Briel D. A., Arunpairojana V., Yokota A. 2004; Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54:1669–1676 [CrossRef]
    [Google Scholar]
  25. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  26. Mayilraj S., Suresh K., Schumann P., Kroppenstedt R. M., Saini H. S. 2006; Agrococcus lahaulensis sp. nov., isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 56:1807–1810 [CrossRef]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  29. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  30. Piton-Malleret C., Gorrieri M. 1992; Nature et variabilité de la flore microbienne dans la morge des fromages de Compté et de Beaufort. Lait 72:143–164 (in French [CrossRef]
    [Google Scholar]
  31. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Modern Microbial Methods (Chemical Methods in Prokaryotic Systematics Series) pp  493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schaal K. P. 1985; Identification of clinically significant actinomycetes and related bacteria using chemical techniques. In Chemical Methods in Bacterial Systematics pp  359–381 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  35. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  36. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  37. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22 [CrossRef]
    [Google Scholar]
  38. Uchida K., Kudo T., Suzuki K., Nakase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [CrossRef]
    [Google Scholar]
  39. Valdés-Stauber N., Scherer S., Seiler H. 1997; Identification of yeasts and coryneform bacteria from the surface microflora of brick cheeses. Int J Food Microbiol 34:115–129 [CrossRef]
    [Google Scholar]
  40. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  41. Wieser M., Schumann P., Martin K., Altenburger P., Burghardt J., Lubitz W., Busse H.-J. 1999; Agrococcus citreus sp. nov., isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria). Int J Syst Bacteriol 49:1165–1170 [CrossRef]
    [Google Scholar]
  42. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  43. Zlamala C., Schumann P.., Kämpfer P., Rosselló-Mora R., Lubitz W., Busse H.-J. 2002; Agrococcus baldri sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1211–1216 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64270-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64270-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error