1887

Abstract

Strain VP48 was isolated from drinking water during a screening programme to monitor the bacterial population present in the water distribution system of Sevilla (Spain). A polyphasic taxonomic study of the isolate resulted in its identification as a member of the genus , members of which are widely distributed in soil, water and clinical sources. However, the 16S rRNA gene sequence similarity values of strain VP48 to the type strains of species were 96 % or lower. Furthermore, phenotypic characteristics clearly indicated that the isolate represents a novel species, for which the name sp. nov. is proposed; strain VP48 (=CECT 7129=CCM 7359=JCM 13554) is the type strain. The DNA G+C content of this strain is 34.3 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64264-0
2006-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1589.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64264-0&mimeType=html&fmt=ahah

References

  1. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  2. Christensen, W. B. ( 1946; ). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52, 461–466.
    [Google Scholar]
  3. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  4. de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. R. ( 2005; ). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55, 2149–2153.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  6. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K. ( 2003; ). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef]
    [Google Scholar]
  7. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J. ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef]
    [Google Scholar]
  8. Kim, K. K., Bae, H.-S., Schumann, P. & Lee, S.-T. ( 2005a; ). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef]
    [Google Scholar]
  9. Kim, K. K., Kim, M. K., Lim, J. H., Park, H. Y. & Lee, S.-T. ( 2005b; ). Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55, 1287–1293.[CrossRef]
    [Google Scholar]
  10. King, E. O. ( 1959; ). Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 31, 241–247.
    [Google Scholar]
  11. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  12. Kovacs, N. ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703.
    [Google Scholar]
  13. Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X., Kobayashi, K. & Ezaki, T. ( 2003; ). Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26, 523–528.[CrossRef]
    [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  15. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  16. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4, 109–118.
    [Google Scholar]
  17. Mellado, E., Moore, E. R. B., Nieto, J. J. & Ventosa, A. ( 1995; ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45, 712–716.[CrossRef]
    [Google Scholar]
  18. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn, pp. 217–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  19. Park, M. S., Jung, S. R., Lee, K. H., Lee, M.-S., Do, J. O., Kim, S. B. & Bae, K. S. ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov, isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433–438.[CrossRef]
    [Google Scholar]
  20. Reasoner, D. J. & Geldreich, E. E. ( 1985; ). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 1–7.
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Shen, F.-T., Kämpfer, P., Young, C.-C., Lai, W.-A. & Arun, A. B. ( 2005; ). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55, 1301–1304.[CrossRef]
    [Google Scholar]
  23. Shimomura, K., Kaji, S. & Hiraishi, A. ( 2005; ). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55, 1903–1906.[CrossRef]
    [Google Scholar]
  24. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  25. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  26. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B. ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef]
    [Google Scholar]
  27. Young, C.-C., Kämpfer, P., Shen, F.-T., Lai, W.-A. & Arun, A. B. ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64264-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64264-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1589 - 1592

API ZYM profiles of strain VP48 and species of the genera and . [PDF](28 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error